216 resultados para finite differences
Resumo:
Background: The current data comparing posterior and anterior circulation strokes with regards to clinical, etiological, radiological and outcome factors are conflicting. We searched for distinguishing features between both territories in 1'449 consecutive acute ischemic stroke patients. Methods: All consecutive patients with acute ischemic stroke admitted to a single stroke unit from January 2003 to July 2008 were included in a prospective registry. Territory of acute stroke was determined by a combination of neuroimaging (MRI and / CT / CTP) and clinical symptoms and signs. Patients with uncertain localisation and patients with simultaneous strokes in the anterior and posterior circulation were excluded from this analysis. Results: Of a total of 1728 patients, 466 (17.0%) had had posterior, 983 (56.8%) anterior, 136 (7.9%) unknown territory, and 43 (2.5%) simultaneous posterior and anterior territory stroke. Of 39 variables that were compared, 29 differed significantly in univariate analysis, including less dependency (OR_0.50) and mortality (OR_0.56) at 3 months in posterior stroke. In multivariate analysis (see table), male gender, lacunar mechanism, arterial dissection and endovascular recanalisation were more frequent in posterior stroke, and admission NIHSS and IV-thrombolysis rate were lower. Significant acute arterial pathology (_50% stenosis) was less frequently found on acute imaging in posterior stroke (OR_0.33). Of 633 patients with significant arterial pathology, it was more frequently present intracranially in posterior (OR_1.62) and extracranially in anterior stroke (OR _ 0.87). In 610 patients where recanalisation was assessed at 24 hours, intracranial (OR_0.26), extracranial (OR_0.25) and overall recanalisation (OR_0.34) was less frequent in the posterior circulation. Conclusions: Acute posterior strokes are less severe and recover better, despite lower IV thrombolysis and recanalisation rates. They are more frequently due to lacunes and dissections and have less arterial pathology burden then anterior circulation strokes.
Resumo:
The scenario considered here is one where brain connectivity is represented as a network and an experimenter wishes to assess the evidence for an experimental effect at each of the typically thousands of connections comprising the network. To do this, a univariate model is independently fitted to each connection. It would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected number of false positives for a network comprising N=90 nodes and N(N-1)/2=4005 connections would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic (NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering, where the definition of a voxel cluster is unambiguous, 'clusters' formed among supra-threshold connections can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use and demonstrate their utility using a case study involving neuroimaging data.
Resumo:
The investigation of gender differences in emotion has attracted much attention given the potential ramifications on our understanding of sexual differences in disorders involving emotion dysregulation. Yet, research on content-specific gender differences across adulthood in emotional responding is lacking. The aims of the present study were twofold. First, we sought to investigate to what extent gender differences in the self-reported emotional experience are content specific. Second, we sought to determine whether gender differences are stable across the adult lifespan. We assessed valence and arousal ratings of 14 picture series, each of a different content, in 94 men and 118 women aged 20 to 81. Compared to women, men reacted more positively to erotic images, whereas women rated low-arousing pleasant family scenes and landscapes as particularly positive. Women displayed a disposition to respond with greater defensive activation (i.e., more negative valence and higher arousal), in particular to the most arousing unpleasant contents. Importantly, significant interactions between gender and age were not found for any single content. This study makes a novel contribution by showing that gender differences in the affective experiences in response to different contents persist across the adult lifespan. These findings support the "stability hypothesis" of gender differences across age.
Resumo:
This review compares the differences in systemic responses (VO2max, anaerobic threshold, heart rate and economy) and in underlying mechanisms of adaptation (ventilatory and hemodynamic and neuromuscular responses) between cycling and running. VO2max is specific to the exercise modality. Overall, there is more physiological training transfer from running to cycling than vice-versa. Several other physiological differences between cycling and running are discussed: HR is different between the two activities both for maximal and sub-maximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than running due to mechanical constraints. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.
Resumo:
PURPOSE: Gender differences in paediatric patients with inflammatory bowel disease (IBD) are frequently reported as a secondary outcome and the results are divergent. To assess gender differences by analysing data collected within the Swiss IBD cohort study database since 2008, related to children with IBD, using the Montreal classification for a systematic approach. METHODS: Data on gender, age, anthropometrics, disease location at diagnosis, disease behaviour, and therapy of 196 patients, 105 with Crohn's disease (CD) and 91 with ulcerative or indeterminate colitis (UC/IC) were retrieved and analysed. RESULTS: THE CRUDE GENDER RATIO (MALE : female) of patients with CD diagnosed at <10 years of age was 2.57, the adjusted ratio was 2.42, and in patients with UC/IC it was 0.68 and 0.64 respectively. The non-adjusted gender ratio of patients diagnosed at ≥10 years was 1.58 for CD and 0.88 for UC/IC. Boys with UC/IC diagnosed <10 years of age had a longer diagnostic delay, and in girls diagnosed with UC/IC >10 years a more important use of azathioprine was observed. No other gender difference was found after analysis of age, disease location and behaviour at diagnosis, duration of disease, familial occurrence of IBD, prevalence of extra-intestinal manifestations, complications, and requirement for surgery. CONCLUSION: CD in children <10 years affects predominantly boys with a sex ratio of 2.57; the impact of sex-hormones on the development of CD in pre-pubertal male patients should be investigated.
Resumo:
BACKGROUND AND PURPOSE: We compared among young patients with ischemic stroke the distribution of vascular risk factors among sex, age groups, and 3 distinct geographic regions in Europe. METHODS: We included patients with first-ever ischemic stroke aged 15 to 49 years from existing hospital- or population-based prospective or consecutive young stroke registries involving 15 cities in 12 countries. Geographic regions were defined as northern (Finland, Norway), central (Austria, Belgium, France, Germany, Hungary, The Netherlands, Switzerland), and southern (Greece, Italy, Turkey) Europe. Hierarchical regression models were used for comparisons. RESULTS: In the study cohort (n=3944), the 3 most frequent risk factors were current smoking (48.7%), dyslipidemia (45.8%), and hypertension (35.9%). Compared with central (n=1868; median age, 43 years) and northern (n=1330; median age, 44 years) European patients, southern Europeans (n=746; median age, 41 years) were younger. No sex difference emerged between the regions, male:female ratio being 0.7 in those aged <34 years and reaching 1.7 in those aged 45 to 49 years. After accounting for confounders, no risk-factor differences emerged at the region level. Compared with females, males were older and they more frequently had dyslipidemia or coronary heart disease, or were smokers, irrespective of region. In both sexes, prevalence of family history of stroke, dyslipidemia, smoking, hypertension, diabetes mellitus, coronary heart disease, peripheral arterial disease, and atrial fibrillation positively correlated with age across all regions. CONCLUSIONS: Primary preventive strategies for ischemic stroke in young adults-having high rate of modifiable risk factors-should be targeted according to sex and age at continental level.
Resumo:
Sleep deprivation (SD) results in increased electroencephalographic (EEG) delta power during subsequent non-rapid eye movement sleep (NREMS) and is associated with changes in the expression of circadian clock-related genes in the cerebral cortex. The increase of NREMS delta power as a function of previous wake duration varies among inbred mouse strains. We sought to determine whether SD-dependent changes in circadian clock gene expression parallel this strain difference described previously at the EEG level. The effects of enforced wakefulness of incremental durations of up to 6 h on the expression of circadian clock genes (bmal1, clock, cry1, cry2, csnk1epsilon, npas2, per1, and per2) were assessed in AKR/J, C57BL/6J, and DBA/2J mice, three strains that exhibit distinct EEG responses to SD. Cortical expression of clock genes subsequent to SD was proportional to the increase in delta power that occurs in inbred strains: the strain that exhibits the most robust EEG response to SD (AKR/J) exhibited dramatic increases in expression of bmal1, clock, cry2, csnkIepsilon, and npas2, whereas the strain with the least robust response to SD (DBA/2) exhibited either no change or a decrease in expression of these genes and cry1. The effect of SD on circadian clock gene expression was maintained in mice in which both of the cryptochrome genes were genetically inactivated. cry1 and cry2 appear to be redundant in sleep regulation as elimination of either of these genes did not result in a significant deficit in sleep homeostasis. These data demonstrate transcriptional regulatory correlates to previously described strain differences at the EEG level and raise the possibility that genetic differences underlying circadian clock gene expression may drive the EEG differences among these strains.
Resumo:
Sex differences in cognition have been largely investigated. The most consistent sex differences favoring females are observed in object location memory involving the left hemisphere whereas the most consistent sex differences favoring males are observed in tasks that require mental rotation involving the right hemisphere. Here we used a task involving these two abilities to see the impact of mental rotation on object location memory. To that end we used a combination of behavioral and event-related potential (ERP) electroencephalography (EEG) measures.A computer screen displayed a square frame of 4 pairs of images (a "teddy" bear, a shoe, an umbrella and a lamp) randomly arranged around a central fixation cross. After a 10-second interval for memorization, images disappeared and were replaced by a test frame with no image but a random pair of two locations marked in black. In addition, this test frame was randomly displayed either in the original orientation (0° rotation) or in the rotated one (90° clockwise - CW - or 90° counterclockwise - CCW). Preceding the test frame, an arrow indicating the presence or the absence of rotation of the frame was displayed on the screen. The task of the participants (15 females and 15 males) was to determine if two marked locations corresponded or not to a pair of identical images. Each response was followed by feedback.Findings showed no significant sex differences in the performance of the original orientation. In comparison with this position, the rotation of the frame produced an equal decrease of male and female performance. In addition, this decrease was significantly higher when the rotation of the frame was in a CCW direction. We further assessed the ERP when the arrow indicated the direction of rotation as stimulus-onset, during four time windows representing major components C1, P1, N1 and N2. Although no sex differences were observed in performance, brain activities differed according to sex. Enhanced amplitudes were found for the CCW compared to CW rotation over the right posterior areas for the P1, N1 and N2 components for men as well as for women. Major topographical differences related to sex were measured for the CW rotation condition as marked lateralized amplitude: left-hemisphere amplitude larger than right one was measured during P1 time range for men. These similar patterns prolonged from P1 to N1 for women. Early distinctions were found in interaction with sex between CCW and CW waveform amplitudes, expressing over anterior electrode sites during C1 time range (0-50 ms post-stimulus).In conclusion (i) women do not outperform men in object location memory in this study (absence of rotation condition); (ii) mental rotation, in particular the direction of rotation, influences performance on object location memory; (iii) CCW rotation is associated with activity in the right parietal hemisphere whereas the CW rotation involves the left parietal hemisphere; (iv) this last effect is less pronounced in males, which could explain why greater involvement of right parietal areas in men and of bilateral posterior areas in women is generally reported in mental rotation tasks; and (v) the early distinctions between both directions of rotation located over anterior sites could be related to sex differences in their respective involvement of control mechanisms.
Resumo:
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.
Resumo:
AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
Obesity prevalence is generally higher in women than in men, and there is also a sex difference in body fat distribution. Sex differences in obesity can be explained in part by the influence of gonadal steroids on body composition and appetite; however, behavioural, socio-cultural and chromosomal factors may also play a role. This review, which evolved from the 2008 Stock Conference on sex differences in obesity, summarizes current research and recommendations related to hormonal and neuroendocrine influences on energy balance and fat distribution. A number of important gaps in the research are identified, including a need for more studies on chromosomal sex effects on energy balance, the role of socio-cultural (i.e. gender) factors in obesity and the potential deleterious effects of high-fat diets during pregnancy on the foetus. Furthermore, there is a paucity of clinical trials examining sex-specific approaches and outcomes of obesity treatment (lifestyle-based or pharmacological), and research is urgently needed to determine whether current weight loss programmes, largely developed and tested on women, are appropriate for men. Last, it is important that both animal and clinical research on obesity be designed and analysed in such a way that data can be separately examined in both men and women.