319 resultados para fasting glucose
Resumo:
PURPOSE: An optimal target for glucose control in ICU patients remains unclear. This prospective randomized controlled trial compared the effects on ICU mortality of intensive insulin therapy (IIT) with an intermediate glucose control. METHODS: Adult patients admitted to the 21 participating medico-surgical ICUs were randomized to group 1 (target BG 7.8-10.0 mmol/L) or to group 2 (target BG 4.4-6.1 mmol/L). RESULTS: While the required sample size was 1,750 per group, the trial was stopped early due to a high rate of unintended protocol violations. From 1,101 admissions, the outcomes of 542 patients assigned to group 1 and 536 of group 2 were analysed. The groups were well balanced. BG levels averaged in group 1 8.0 mmol/L (IQR 7.1-9.0) (median of all values) and 7.7 mmol/L (IQR 6.7-8.8) (median of morning BG) versus 6.5 mmol/L (IQR 6.0-7.2) and 6.1 mmol/L (IQR 5.5-6.8) for group 2 (p < 0.0001 for both comparisons). The percentage of patients treated with insulin averaged 66.2 and 96.3%, respectively. Proportion of time spent in target BG was similar, averaging 39.5% and 45.1% (median (IQR) 34.3 (18.5-50.0) and 39.3 (26.2-53.6)%) in the groups 1 and 2, respectively. The rate of hypoglycaemia was higher in the group 2 (8.7%) than in group 1 (2.7%, p < 0.0001). ICU mortality was similar in the two groups (15.3 vs. 17.2%). CONCLUSIONS: In this prematurely stopped and therefore underpowered study, there was a lack of clinical benefit of intensive insulin therapy (target 4.4-6.1 mmol/L), associated with an increased incidence of hypoglycaemia, as compared to a 7.8-10.0 mmol/L target. (ClinicalTrials.gov # NCT00107601, EUDRA-CT Number: 200400391440).
Resumo:
The molecular cloning of facilitated sugar transporters has led to the identification of a family of transport molecules having similar functions, but possessing specific kinetic and regulatory properties. These transporter isoforms are characterized by different primary structures, specific tissue localization, and polarized expression within the same epithelial cells. The use of Xenopus oocytes for the functional expression of different members of this transporter family has been of considerable value in defining the kinetic properties and sugar specificities of the different isoforms. The expression of chimeric or variously mutated transporters should, in the near future, permit the determination of the structural basis for their kinetic properties and sugar specificities. cDNA probes and antipeptide antibodies specific for each isoform are now being used to determine their specific regulation during development and in different states of altered glucose homeostasis. The variety of molecular forms implicated in the apparently simple task of sugar uptake or transepithelial transport has been surprising. With the available molecular tools now in hand, it will be possible to study these mechanisms in much greater detail.
Resumo:
BACKGROUND: Bariatric surgery markedly improves glucose homeostasis in patients with type 2 diabetes even before any significant weight loss is achieved. Procedures that involve bypassing the proximal small bowel, such as Roux-en-Y gastric bypass (RYGBP), are more efficient than gastric restriction procedures such as gastric banding (GB). OBJECTIVE: To evaluate the effects of RYGBP and GB on postprandial glucose kinetics and gastro-intestinal hormone secretion after an oral glucose load. METHODS AND PROCEDURES: This study was a cross-sectional comparison among non-diabetic, weight-stable women who had undergone RYGBP (n = 8) between 9 and 48 months earlier or GB (n = 6) from 25 to 85 months earlier, and weight- and age-matched control subjects (n = 8). The women were studied over 4 h following ingestion of an oral glucose load. Total glucose and meal glucose kinetics were assessed using glucose tracers and plasma insulin, and gut hormone concentrations were simultaneously monitored. RESULTS: Patients who had undergone RYGBP showed a a more rapid appearance of exogenous glucose in the systemic circulation and a shorter duration of postprandial hyperglycemia than patients who had undergone GB and C. The response in RYGBP patients was characterized by early and accentuated insulin response, enhanced postprandial levels of glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY), and greater postprandial suppression of ghrelin. DISCUSSION: These findings indicate that RYGBP is associated with alterations in glucose kinetics and glucoregulatory hormone secretion. These alterations are probably secondary to the anatomic rearrangement of the foregut, given the fact that they are not observed after GB. Increased PYY and GLP-1 concentrations and enhanced ghrelin suppression are compatible with reduced food intake after RYGBP.
Resumo:
OBJECTIVE: The associations between inflammation, diabetes and insulin resistance remain controversial. Hence, we assessed the associations between diabetes, insulin resistance (using HOMA-IR) and metabolic syndrome with the inflammatory markers high-sensitive C-reactive protein (hs-CRP), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). DESIGN: Cross-sectional study. PARTICIPANTS: Two thousand eight hundred and eighty-four men and 3201 women, aged 35-75, participated in this study. METHODS: C-reactive protein was assessed by immunoassay and cytokines by multiplexed flow cytometric assay. In a subgroup of 532 participants, an oral glucose tolerance test (OGTT) was performed to screen for impaired glucose tolerance (IGT). RESULTS: IL-6, TNF-α and hs-CRP were significantly and positively correlated with fasting plasma glucose (FPG), insulin and HOMA-IR. Participants with diabetes had higher IL-6, TNF-α and hs-CRP levels than participants without diabetes; this difference persisted for hs-CRP after multivariate adjustment. Participants with metabolic syndrome had increased IL-6, TNF-α and hs-CRP levels; these differences persisted after multivariate adjustment. Participants in the highest quartile of HOMA-IR had increased IL-6, TNF-α and hs-CRP levels; these differences persisted for TNF-α and hs-CRP after multivariate adjustment. No association was found between IL-1β levels and all diabetes and insulin resistance markers studied. Finally, participants with IGT had higher hs-CRP levels than participants with a normal OGTT, but this difference disappeared after controlling for body mass index (BMI). CONCLUSION: We found that subjects with diabetes, metabolic syndrome and increased insulin resistance had increased levels of IL6, TNF-α and hs-CRP, while no association was found with IL-1β. The increased inflammatory state of subjects with IGT is partially explained by increased BMI.
Resumo:
BACKGROUND: Fat redistribution, increased inflammation and insulin resistance are prevalent in non-diabetic subjects treated with maintenance dialysis. The aim of this study was to test whether pioglitazone, a powerful insulin sensitizer, alters body fat distribution and adipokine secretion in these subjects and whether it is associated with improved insulin sensitivity. TRIAL DESIGN: This was a double blind cross-over study with 16 weeks of pioglitazone 45 mg vs placebo involving 12 subjects. METHODS: At the end of each phase, body composition (anthropometric measurements, dual energy X-ray absorptometry (DEXA), abdominal CT), hepatic and muscle insulin sensitivity (2-step hyperinsulinemic euglycemic clamp with 2H2-glucose) were measured and fasting blood adipokines and cardiometabolic risk markers were monitored. RESULTS: Four months treatment with pioglitazone had no effect on total body weight or total fat but decreased the visceral/sub-cutaneous adipose tissue ratio by 16% and decreased the leptin/adiponectin (L/A) ratio from 3.63×10-3 to 0.76×10-3. This was associated with a 20% increase in hepatic insulin sensitivity without changes in muscle insulin sensitivity, a 12% increase in HDL cholesterol and a 50% decrease in CRP. CONCLUSIONS/LIMITATIONS: Pioglitazone significantly changes the visceral-subcutaneous fat distribution and plasma L/A ratio in non diabetic subjects on maintenance dialysis. This was associated with improved hepatic insulin sensitivity and a reduction of cardio-metabolic risk markers. Whether these effects may improve the outcome of non diabetic end-stage renal disease subjects on maintenance dialysis still needs further evaluation. TRIAL REGISTRATION: ClinicalTrial.gov NCT01253928.
Resumo:
OBJECTIVE: To evaluate the relative importance of increased lactate production as opposed to decreased utilization in hyperlactatemic patients, as well as their relation to glucose metabolism. DESIGN: Prospective observational study. SETTING: Surgical intensive care unit of a university hospital. PATIENTS: Seven patients with severe sepsis or septic shock, seven patients with cardiogenic shock, and seven healthy volunteers. INTERVENTIONS: C-labeled sodium lactate was infused at 10 micromol/kg/min and then at 20 micromol/kg/min over 120 mins each. H-labeled glucose was infused throughout. MEASUREMENTS AND MAIN RESULTS: Baseline arterial lactate was higher in septic (3.2 +/- 2.6) and cardiogenic shock patients (2.8 +/- 0.4) than in healthy volunteers (0.9 +/- 0.20 mmol/L, p < .05). Lactate clearance, computed using pharmacokinetic calculations, was similar in septic, cardiogenic shock, and controls, respectively: 10.8 +/- 5.4, 9.6 +/- 2.1, and 12.0 +/- 2.6 mL/kg/min. Endogenous lactate production was determined as the initial lactate concentration multiplied by lactate clearance. It was markedly enhanced in the patients (septic 26.2 +/- 10.5; cardiogenic shock 26.6 +/- 5.1) compared with controls (11.2 +/- 2.7 micromol/kg/min, p < .01). C-lactate oxidation (septic 54 +/- 25; cardiogenic shock 43 +/- 16; controls 65 +/- 15% of a lactate load of 10 micromol/kg/min) and transformation of C-lactate into C-glucose were not different (respectively, 15 +/- 15, 9 +/- 18, and 10 +/- 7%). Endogenous glucose production was markedly increased in the patients (septic 14.8 +/- 1.8; cardiogenic shock 15.0 +/- 1.5) compared with controls (7.2 +/- 1.1 micromol/kg/min, p < .01) and was not influenced by lactate infusion. CONCLUSIONS: In patients suffering from septic or cardiogenic shock, hyperlactatemia was mainly related to increased production, whereas lactate clearance was similar to healthy subjects. Increased lactate production was concomitant to hyperglycemia and increased glucose turnover, suggesting that the latter substantially influences lactate metabolism during critical illness.
Resumo:
Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12 degreesC). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.
Resumo:
The oxidative and nonoxidative glucose metabolism represent the two major mechanisms of the utilization of a glucose load. Eight normal subjects were administered oral loads of 50, 100 and 150 g glucose and gas exchange measurements were performed for eight hours by means of computerized continuous indirect calorimetry. The glycemic peaks were almost identical with all three doses with a rise to between 141 and 147 mg/dl at 60 min. The fall back to basal level was reached later with the high than with the low glucose doses. The glucose oxidation rate rose to values between 223 and 253 mg/min after the three glucose doses, but while falling immediately after the peak at 120 min following the 50 g load, the glucose oxidation rate remained at its maximum rate until 210 min for the 100 g glucose load and plateaued up to 270 min for the 150 g glucose dose. The oxidation rates then fell gradually to reach basal levels at 270, 330 and 420 min according to the increasing size of the load. Altogether 55 +/- 3 g glucose were oxidized during the 8 hours following the 50 g glucose load, 75 +/- 3 g after the 100 g load and 80 +/- 5 g after the 150 g load. The nonoxidative glucose disposal, which corresponds essentially to glucose storage, varied according to the size of the glucose load, with uptakes of 20 +/- 1, 60 +/- 1 and 110 +/- 1 g glucose 180 min after the 50, 100 and 150 g glucose loads respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.
Resumo:
Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
Hypoglycaemia is a major cause of neonatal morbidity and may induce long-term developmental sequelae. Clinical signs of hypoglycaemia in neonatal infants are unspecific or even absent, and therefore, precise and accurate methods for the assessment of glycaemia are needed. Glycaemia measurement in newborns has some particularities like a very low limit of normal glucose concentration compared to adults and a large range of normal haematocrit values. Many bedside point-of-care testing (POCT) systems are available, but literature about their accuracy in newborn infants is scarce and not very convincing. In this retrospective study, we identified over a 1-year study period 1,324 paired glycaemia results, one obtained at bedside with one of three different POCT systems (Elite? XL, Ascensia? Contour? and ABL 735) and the other in the central laboratory of the hospital with the hexokinase reference method. All three POCT systems tended to overestimate glycaemia values, and none of them fulfilled the ISO 15197 accuracy criteria. The Elite XL appeared to be more appropriate than Contour to detect hypoglycaemia, however with a low specificity. Contour additionally showed an important inaccuracy with increasing haematocrit. The bench analyzer ABL 735 was the most accurate of the three tested POCT systems. Both of the tested handheld glucometers have important drawbacks in their use as screening tools for hypoglycaemia in newborn infants. ABL 735 could be a valuable alternative, but the blood volume needed is more than 15 times higher than for handheld glucometers. Before daily use in the newborn population, careful clinical evaluation of each new POCT system for glucose measurement is of utmost importance.
Resumo:
BACKGROUND & AIMS: n-3 fatty acids are expected to downregulate the inflammatory responses, and hence may decrease insulin resistance. On the other hand, n-3 fatty acid supplementation has been reported to increase glycemia in type 2 diabetes. We therefore assessed the effect of n-3 fatty acids delivered with parenteral nutrition on glucose metabolism in surgical intensive care patients. METHODS: Twenty-four surgical intensive care patients were randomized to receive parenteral nutrition providing 1.25 times their fasting energy expenditure, with 0.25 g of either an n-3 fatty acid enriched-or a soy bean-lipid emulsion. Energy metabolism, glucose production, gluconeogenesis and hepatic de novo lipogenesis were evaluated after 4 days. RESULTS: Total energy expenditure was significantly lower in patients receiving n-3 fatty acids (0.015+/-0.001 vs. 0.019+/-0.001 kcal/kg/min with soy bean lipids (P<0.05)). Glucose oxidation, lipid oxidation, glucose production, gluconeogenesis, hepatic de novo lipogenesis, plasma glucose, insulin and glucagon concentrations did not differ (all P>0.05) in the 2 groups. CONCLUSIONS: n-3 fatty acids were well tolerated in this group of severely ill patients. They decreased total energy expenditure without adverse metabolic effects.
Resumo:
In pancreatic beta-cells, the high Km glucose transporter GLUT2 catalyzes the first step in glucose-induced insulin secretion by glucose uptake. Expression of the transporter has been reported to be modulated by glucose either at the protein or mRNA levels. In this study we used the differentiated insulinoma cell line INS-1 which expresses high levels of GLUT2 and show that the expression of GLUT2 is regulated by glucose at the transcriptional level. By run-on transcription assays we showed that glucose induced GLUT2 gene transcription 3-4-fold in INS-1 cells which was paralleled by a 1.7-2.3-fold increase in cytoplasmic GLUT2 mRNA levels. To determine whether glucose regulatory sequences were present in the promoter region of GLUT2, we cloned and characterized a 1.4-kilobase region of mouse genomic DNA located 5' of the translation initiation site. By RNase protection assays and primer extension, we determined that multiple transcription initiation sites were present at positions -55, -64, and -115 from the first coding ATG and which were identified in liver, intestine, kidney, and beta-cells mRNAs. Plasmids were constructed with the mouse promoter region linked to the reporter gene chloramphenicol acetyltransferase (CAT), and transiently and stably transfected in the INS-1 cells. Glucose induced a concentration-dependent increase in CAT activity which reached a maximum of 3.6-fold at 20 mM glucose. Similar CAT constructs made of the human GLUT2 promoter region and the CAT gene displayed the same glucose-dependent increase in transcriptional activity when transfected into INS-1 cells. Comparison of the mouse and human promoter regions revealed sequence identity restricted to a few stretches of sequences which suggests that the glucose responsive element(s) may be conserved in these common sequences.