149 resultados para exposure period
Resumo:
Excessive exposure to solar UV light is the main cause of skin cancers in humans. UV exposure depends on environmental as well as individual factors related to activity. Although outdoor occupational activities contribute significantly to the individual dose received, data on effective exposure are scarce and limited to a few occupations. A study was undertaken in order to assess effective short-term exposure among building workers and characterize the influence of individual and local factors on exposure. The effective exposure of construction workers in a mountainous area in the southern part of Switzerland was investigated through short-term dosimetry (97 dosimeters). Three altitudes, of about 500, 1500 and 2500 m were considered. Individual measurements over 20 working periods were performed using Spore film dosimeters on five body locations. The postural activity of workers was concomitantly recorded and static UV measurements were also performed. Effective exposure among building workers was high and exceeded occupational recommendations, for all individuals for at least one body location. The mean daily UV dose in plain was 11.9 SED (0.0-31.3 SED), in middle mountain 21.4 SED (6.6-46.8 SED) and in high mountain 28.6 SED (0.0-91.1 SED). Measured doses between workers and anatomical locations exhibited a high variability, stressing the role of local exposure conditions and individual factors. Short-term effective exposure ranged between 0 and 200% of ambient irradiation, indicating the occurrence of intense, subacute exposures. A predictive irradiation model was developed to investigate the role of individual factors. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure, and were also found to account more than altitude on the total variance of effective daily exposures. Targeted sensitization actions through professional information channels and specific prevention messages are recommended. Altitude outdoor workers should also benefit from preventive medical examination.
Resumo:
Introduction Statin use in women of childbearing age is increasingly common. However, published data on pregnancy outcome after exposure to statins are scarce and conflicting. This contribution addresses the safety of statin use during pregnancy.Materials and Methods In a multi-centre (n = 11), prospective study we compared the outcomes of 249 women exposed during the 1st trimester of pregnancy to simvastatin (n = 124), atorvastatin (n = 67), pravastatin (n = 32), rosuvastatin (n = 18), fl uvastatin (n = 7) or cerivastatin (n = 1) with a control group exposed to agents known to be non-teratogenic (n = 249). Data were collected by members of the European Network of Teratology Information Services during individual risk counselling.Results The difference in the rate of major birth defects between the statinexposed and the control group was statistically insignificant (4.0% versus 2.7% OR 1.5; 95% CI 0.5-4.5, p = 0.44). The crude rate of spontaneous abortions (12.8% versus 7.1%, OR 1.9, 95% CI 1.0-3.6, p = 0.04) was higher in the exposed group. However, after adjustment to maternal age and gestational age at initial contact, the difference became insignificant. The rate of elective pregnancy-termination (8.8% versus 4.4%, p = 0.05) was higher and the rate of live births was lower in the exposed group (77.9% versus 88.4%, p = 0.002). Prematurity was more frequent in exposed pregnancies (16.1% versus 8.5%; OR 2.1, 95% CI 1.1- 3.8, p = 0.02). Nonetheless, gestational age at birth (median 39 weeks, IQR 37-40 versus 39 weeks, IQR 38-40, p = 0.27) and birth weight (median 3280 g, IQR 2835-3590 versus 3250 g, IQR 2880- 3600, p = 0.95) did not differ between exposed and non-exposed pregnancies.Conclusion This study did not detect a teratogenic effect of statins. Its statistical power however is not sufficient to reverse the recommendation of treatment discontinuation during pregnancy.
Resumo:
Consumption of nicotine in the form of smokeless tobacco (snus, snuff, chewing tobacco) or nicotine-containing medication (gum, patch) may benefit sport practice. Indeed, use of snus seems to be a growing trend and investigating nicotine consumption amongst professional athletes is of major interest to sport authorities. Thus, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection and quantification of nicotine and its principal metabolites cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide in urine was developed. Sample preparation was performed by liquid-liquid extraction followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in electrospray positive ionization (ESI) mode with selective reaction monitoring (SRM) data acquisition. The method was validated and calibration curves were linear over the selected concentration ranges of 10-10,000 ng/mL for nicotine, cotinine, trans-3-hydroxycotinine and 10-5000 ng/mL for nicotine-N'-oxide and cotinine-N-oxide, with calculated coefficients of determination (R(2)) greater than 0.95. The total extraction efficiency (%) was concentration dependent and ranged between 70.4 and 100.4%. The lower limit of quantification (LLOQ) for all analytes was 10 ng/mL. Repeatability and intermediate precision were ?9.4 and ?9.9%, respectively. In order to measure the prevalence of nicotine exposure during the 2009 Ice Hockey World Championships, 72 samples were collected and analyzed after the minimum of 3 months storage period and complete removal of identification means as required by the 2009 International Standards for Laboratories (ISL). Nicotine and/or metabolites were detected in every urine sample, while concentration measurements indicated an exposure within the last 3 days for eight specimens out of ten. Concentrations of nicotine, cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide were found to range between 11 and 19,750, 13 and 10,475, 10 and 8217, 11 and 3396, and 13 and 1640 ng/mL, respectively. When proposing conservative concentration limits for nicotine consumption prior and/or during the games (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N'-oxide and cotinine-N-oxide), about half of the hockey players were qualified as consumers. These findings significantly support the likelihood of extensive smokeless nicotine consumption. However, since such conclusions can only be hypothesized, the potential use of smokeless tobacco as a doping agent in ice hockey requires further investigation.
Resumo:
OBJECTIVE: Exposure to altitude may lead to acute mountain sickness (AMS) in nonacclimatized individuals. We surveyed AMS prevalence and potential risk factors in trekkers crossing a 5400-m pass in Nepal and compared the results with those of 2 similar studies conducted 12 and 24 years earlier. METHODS: In April 2010, 500 surveys were distributed to English-speaking trekkers at 3500 m on their way to 5400 m, of which 332 (66%) surveys were returned complete. Acute mountain sickness was quantified with the Lake Louise Scoring System (LLSS, cutoff ≥3 and ≥5) and the Environmental Statistical Questionnaire III AMS-C score (ESQ-III, cutoff ≥0.7). We surveyed demographics, body mass index (BMI), smoking habit, rate of ascent, awareness of AMS, and acetazolamide use. RESULTS: Prevalence of AMS was 22%, 23%, and 48% (ESQ-III ≥0.7, LLSS ≥5, and LLSS ≥3, respectively) lower when compared with earlier studies. Risk factors for AMS were younger age, female sex, higher BMI, and smoking habit. Forty-two percent had elementary knowledge about the risk and prevention of AMS. Forty-four percent used acetazolamide. Trekkers took longer to climb from 3500 to 5400 m than in earlier studies. CONCLUSIONS: Prevalence of AMS continued to decline over a period of 24 years, likely as a result of slower ascent and increased use of acetazolamide. The AMS risk factors of younger age, female sex, and high BMI are consistent with prior studies. Awareness of risk and prevention of AMS remains low, indicating an opportunity to better educate trekkers and potentially further reduce AMS prevalence.
Resumo:
Background and Aims: To protect the population from environmental tobacco smoke (ETS) Switzerland introduced a nationwide rather heterogeneous smoking ban in May 2010. The exposure situation of non-smoking hospitality workers before and after implementation of the new law is being assessed in a prospective cohort study. Methods: Exposure to ETS was measured using a novel method developed by the Institute for Work and Health in Lausanne. It is a passive sampler called MoNIC (Monitor of NICotine). The nicotine of the ETS is fixed onto a filter and transformed into salt of not volatile nicotine. Subsequently the number of passively smoked cigarettes is calculated. Badges were placed at the workplace as well as distributed to the participants for personal measuring. Additionally a salivary sample was taken to determine nicotine concentration. Results: At baseline Spearman's correlation between workplace and personal badge was 0.47. The average cigarette equivalents per day at the workplace obtained by badge significantly dropped from 5.1 (95%- CI: 2.4 to 7.9) at baseline to 0.3 (0.2 to 0.4) at first follow-up (n=29) three months later (p<0.001). For personal badges the number of passively smoked cigarettes declined from 1.5 (2.7 to 0.4) per day to 0.5 (0.3 to 0.8) (n=16).Salivary nicotine concentration in a subset of 13 participants who had worked on the day prior to the examination was 2.63 ng/ml before and 1.53 ng/ml after the ban (p=0.04). Spearman's correlation of salivary nicotine was 0.56 with workplace badge and 0.79 with personal badge concentrations. Conclusions: Workplace measurements clearly reflect the smoking regulation in a venue. The MoNIC badge proves to be a sensitive measuring device to determine personal ETS exposure and it is a demonstrative measure for communication with lay audiences and study participants as the number of passively smoked cigarettes is an easily conceivable result.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
Background: Transplantation improves quality of life (kidney transplantation), and saves lives (heart, lung or liver transplantation), but few qualitative studies have explored existential questionings before transplantation. Methods: In this phenomenological qualitative study, patients registered for kidney (n¼30), liver (n¼11), lung (n¼15), or heart (n¼15) transplantation participated in a semi-structured interview. Findings: The following aspects were discussed: The dilemma of choice, the evaluation process, the endorsement of the ''good candidate's role'', the modification of objects, time and space perception, the co-existence of life and death, and the challenge of the body integrity and of the person's identity. Transplantation generates paradoxical situations, and challenges the person's life values. Discussion: Anxiety and distress may arise with awareness of existential questionings and the co-existence different worlds' life values. Transplantation further generates a broader societal and ethical debate as how to accompany existential questionings in a pragmatic medical environment.
Resumo:
BACKGROUND: Many countries have introduced legislations for public smoking bans to reduce the harmful effects of exposure to tobacco smoke. Smoking bans cause significant reductions in admissions for acute coronary syndromes but their impact on respiratory diseases is unclear. In Geneva, Switzerland, two popular votes led to a stepwise implementation of a state smoking ban in public places, with a temporary suspension. This study evaluated the effect of this smoking ban on hospitalisations for acute respiratory and cardiovascular diseases. METHODS: This before and after intervention study was conducted at the University Hospitals of Geneva, Switzerland, across 4 periods with different smoking legislations. It included 5,345 patients with a first hospitalisation for acute coronary syndrome, ischemic stroke, acute exacerbation of chronic obstructive pulmonary disease, pneumonia and acute asthma. The main outcomes were the incidence rate ratios (IRR) of admissions for each diagnosis after the final ban compared to the pre-ban period and adjusted for age, gender, season, influenza epidemic and secular trend. RESULTS: Hospitalisations for acute exacerbation of chronic obstructive pulmonary disease significantly decreased over the 4 periods and were lowest after the final ban (IRR = 0.54 [95%CI: 0.42-0.68]). We observed a trend in reduced admissions for acute coronary syndromes (IRR = 0.90 [95%CI: 0.80-1.00]). Admissions for ischemic stroke, asthma and pneumonia did not significantly change. CONCLUSIONS: A legislative smoking ban was followed by a strong decrease in hospitalisations for acute exacerbation of chronic obstructive pulmonary disease and a trend for reduced admissions for acute coronary syndrome. Smoking bans are likely to be very beneficial for patients with chronic obstructive pulmonary disease.
Resumo:
PPARs are a family of nuclear hormone receptors involved in various processes that could influence ovarian function. We investigated the cellular localization and expression of PPARs during follicular development in ovarian tissue collected from rats 0, 6, 12, 24, and 48 h post-PMSG. A second group of animals received human CG (hCG) 48 h post-PMSG. Their ovaries were removed 0, 4, 8, 12, and 24 h post-hCG to study the periovulatory period. mRNAs corresponding to the PPAR isotypes (alpha, delta, and gamma) were localized by in situ hybridization. Changes in the levels of mRNA for the PPARs were determined by ribonuclease protection assays. PPAR gamma mRNA was localized primarily to granulosa cells, and levels of expression did not change during follicular development. Four hours post-hCG, levels of mRNA for PPAR gamma decreased (P < 0.05) but not uniformly in all follicles. At 24 h post-hCG, levels of PPAR gamma mRNA were reduced 64%, but some follicles maintained high expression. In contrast, mRNAs for PPAR alpha and delta were located primarily in theca and stroma, and their levels did not change during the intervals studied. To investigate the physiologic significance of PPAR gamma in the ovary, granulosa cells from PMSG-primed rats were cultured for 48 h with prostaglandin J(2) (PGJ(2)) and ciglitazone, PPAR gamma activators. Both compounds increased progesterone and E2 secretion (P < 0.05). These data suggest that PPAR gamma is involved in follicular development, has a negative influence on the luteinization of granulosa cells, and/or regulates the periovulatory shift in steroid production. The more general and steady expression of PPARs alpha and delta indicate that they may play a role in basal ovarian function.
Resumo:
Memory CD4 T cell responses are functionally and phenotypically heterogeneous. In the present study, memory CD4 T cell responses were analyzed in different models of Ag-specific immune responses differing on Ag exposure and/or persistence. Ag-specific CD4 T cell responses for tetanus toxoid, HSV, EBV, CMV, and HIV-1 were compared. Three distinct patterns of T cell response were observed. A dominant single IL-2 CD4 T cell response was associated with the model in which the Ag can be cleared. Polyfunctional (single IL-2 plus IL-2/IFN-gamma plus single IFN-gamma) CD4 T cell responses were associated with Ag persistence and low Ag levels. A dominant single IFN-gamma CD4 T cell response was associated with the model of Ag persistence and high Ag levels. The results obtained supported the hypothesis that the different patterns observed were substantially influenced by different conditions of Ag exposure and persistence.
Resumo:
Monitoring of internal exposure for nuclear medicine workers requires frequent measurements due to the short physical half-lives of most radionuclides used in this field. The aim of this study was to develop screening measurements performed at the workplace by local staff using standard laboratory instrumentation, to detect whether potential intake has occurred. Such measurements do not enable to determine the committed effective dose, but are adequate to verify that a given threshold is not exceeded. For radioiodine, i.e. (123)I, (124)I, (125)I and (131)I, a calibrated surface contamination monitor is placed in front of the thyroid to detect whether the activity threshold has been exceeded. For radionuclides with very short physical half-lives (≤6 h), such as (99m)Tc and those used in positron emission tomography imaging, i.e. (11)C, (15)O, (18)F and (68)Ga, screening procedures consist in performing daily measurements of the ambient dose rate in front of the abdomen. Other gamma emitters used for imaging, i.e. (67)Ga, (111)In and (201)Tl, are measured with a scintillation detector located in front of the thorax. For pure beta emitters, i.e. (90)Y and (169)Er, as well as beta emitters with low-intensity gamma rays, i.e. (153)Sm, (177)Lu, (186)Re and (188)Re, the procedure consists in measuring hand contamination immediately after use. In Switzerland, screening procedures have been adopted by most nuclear medicine services since such measurements enable an acceptable monitoring while taking into account practical and economic considerations.
Resumo:
Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers' or consumers' health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/ SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.