273 resultados para evoked brain stem auditory response
Resumo:
Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.
Resumo:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin (HTT) protein and for which there is no cure. Although suppression of both wild type and mutant HTT expression by RNA interference is a promising therapeutic strategy, a selective silencing of mutant HTT represents the safest approach preserving WT HTT expression and functions. We developed small hairpin RNAs (shRNAs) targeting single nucleotide polymorphisms (SNP) present in the HTT gene to selectively target the disease HTT isoform. Most of these shRNAs silenced, efficiently and selectively, mutant HTT in vitro. Lentiviral-mediated infection with the shRNAs led to selective degradation of mutant HTT mRNA and prevented the apparition of neuropathology in HD rat's striatum expressing mutant HTT containing the various SNPs. In transgenic BACHD mice, the mutant HTT allele was also silenced by this approach, further demonstrating the potential for allele-specific silencing. Finally, the allele-specific silencing of mutant HTT in human embryonic stem cells was accompanied by functional recovery of the vesicular transport of BDNF along microtubules. These findings provide evidence of the therapeutic potential of allele-specific RNA interference for HD.
Resumo:
Astrocytes can experience large intracellular Na+ changes following the activation of the Na+-coupled glutamate transport. The present study investigated whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Mitochondrial Na+ (Na+(mit)) changes were monitored using the Na+-sensitive fluorescent probe CoroNa Red (CR) in intact primary cortical astrocytes, as opposed to the classical isolated mitochondria preparation. The mitochondrial localization and Na+ sensitivity of the dye were first verified and indicated that it can be safely used as a selective Na+(mit) indicator. We found by simultaneously monitoring cytosolic and mitochondrial Na+ using sodium-binding benzofuran isophthalate and CR, respectively, that glutamate-evoked cytosolic Na+ elevations are transmitted to mitochondria. The resting Na+(mit) concentration was estimated at 19.0 +/- 0.8 mM, reaching 30.1 +/- 1.2 mM during 200 microM glutamate application. Blockers of conductances potentially mediating Na+ entry (calcium uniporter, monovalent cation conductances, K+(ATP) channels) were not able to prevent the Na+(mit) response to glutamate. However, Ca2+ and its exchange with Na+ appear to play an important role in mediating mitochondrial Na+ entry as chelating intracellular Ca2+ with BAPTA or inhibiting Na+/Ca2+ exchanger with CGP-37157 diminished the Na+(mit) response. Moreover, intracellular Ca2+ increase achieved by photoactivation of caged Ca2+ also induced a Na+(mit) elevation. Inhibition of mitochondrial Na/H antiporter using ethylisopropyl-amiloride caused a steady increase in Na+(mit) without increasing cytosolic Na+, indicating that Na+ extrusion from mitochondria is mediated by these exchangers. Thus, mitochondria in intact astrocytes are equipped to efficiently sense cellular Na+ signals and to dynamically regulate their Na+ content.
Resumo:
Delta 9-tetrahydrocannabinol (THC) has been proposed as therapeutic agent in the treatment of multiple sclerosis. In the present study, we examined whether a modulation of brain inflammatory by THC may protect against demyelination. Myelinating aggregating brain cell cultures were subjected to demyelination by a repeated treatment (3x) with the two inflammatory agents interferon-y (IFN-y) and lipopolysaccharide (LPS). The effects of THC on an acute inflammatory reponse were also examined by treating the aggregates with a single application of the two inflammatory agents. THC effects on the demyelinating process and on several mediators of the inflammatory reponse were analyzed. THC treatment partially prevented the decreased immunoreactivity for MBP, and the decrease in MBP content measured by immunoblotting. It prevented IFN-y + LPS -induced microglial reactivity; and decreased the IFN-y + LPS-induced i8ncreased phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation were downregulated by THC treatment following a single application of the inflammatory agents, but not after repeated applications. THC protected partially against the IFN-y + LPS-induced demyelination. The protective effect of THC on IFN-y + LPS-induced demyelination may be due to a decrease of the inflammatory reponse. However, the anti-inflammatory effect of THC on some inflammatory markers is lost when the inflammatory response is more proeminent and of longer duration, suggesting either that the anti-inflammatory effect of a molecule may depend on the properties of the inflammatory response, or that the anti-inflammatory potential of THC decreases in case of repeated exposure.
Resumo:
ABSTRACT (English)An accurate processing of the order between sensory events at the millisecond time scale is crucial for both sensori-motor and cognitive functions. Temporal order judgment (TOJ) tasks, is the ability of discriminating the order of presentation of several stimuli presented in a rapid succession. The aim of the present thesis is to further investigate the spatio-temporal brain mechanisms supporting TOJ. In three studies we focus on the dependency of TOJ accuracy on the brain states preceding the presentation of TOJ stimuli, the neural correlates of accurate vs. inaccurate TOJ and whether and how TOJ performance can be improved with training.In "Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy" (Bernasconi et al., 2011), we investigated if the brain activity immediately preceding the presentation of the stimuli modulates TOJ performance. By contrasting the electrophysiological activity before the stimulus presentation as a function of TOJ accuracy we observed a stronger pre-stimulus beta (20Hz) oscillatory activity within the left posterior sylvian region (PSR) before accurate than inaccurate TOJ trials.In "Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment" (Bernasconi et al., 2010a), and "Plastic brain mechanisms for attaining auditory temporal order judgment proficiency" (Bernasconi et al., 2010b), we investigated the spatio-temporal brain dynamics underlying auditory TOJ. In both studies we observed a topographic modulation as a function of TOJ performance at ~40ms after the onset of the first sound, indicating the engagement of distinct configurations of intracranial generators. Source estimations in the first study revealed a bilateral PSR activity for both accurate and inaccurate TOJ trials. Moreover, activity within left, but not right, PSR correlated with TOJ performance. Source estimations in the second study revealed a training-induced left lateralization of the initial bilateral (i.e. PSR) brain response. Moreover, the activity within the left PSR region correlated with TOJ performance.Based on these results, we suggest that a "temporal stamp" is established within left PSR on the first sound within the pair at early stages (i.e. ~40ms) of cortical processes, but is critically modulated by inputs from right PSR (Bernasconi et al., 2010a; b). The "temporal stamp" on the first sound may be established via a sensory gating or prior entry mechanism.Behavioral and brain responses to identical stimuli can vary due to attention modulation, vary with experimental and task parameters or "internal noise". In a fourth experiment (Bernasconi et al., 2011b) we investigated where and when "neural noise" manifest during the stimulus processing. Contrasting the AEPs of identical sound perceived as High vs. Low pitch, a topographic modulation occurred at ca. 100ms after the onset of the sound. Source estimation revealed activity within regions compatible with pitch discrimination. Thus, we provided neurophysiological evidence for the variation in perception induced by "neural noise".ABSTRACT (French)Un traitement précis de l'ordre des événements sensoriels sur une échelle de temps de milliseconde est crucial pour les fonctions sensori-motrices et cognitives. Les tâches de jugement d'ordre temporel (JOT), consistant à présenter plusieurs stimuli en succession rapide, sont traditionnellement employées pour étudier les mécanismes neuronaux soutenant le traitement d'informations sensorielles qui varient rapidement. Le but de cette thèse est d'étudier le mécanisme cérébral soutenant JOT. Dans les trois études présentées nous nous sommes concentrés sur les états du cerveau précédant la présentation des stimuli de JOT, les bases neurales pour un JOT correct vs. incorrect et sur la possibilité et les moyens d'améliorer l'exécution du JOT grâce à un entraînement.Dans "Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy" (Bernasconi et al., 2011),, nous nous sommes intéressé à savoir si l'activité oscillatoire du cerveau au pré-stimulus modulait la performance du JOT. Nous avons contrasté l'activité électrophysiologique en fonction de la performance TOJ, mesurant une activité oscillatoire beta au pré-stimulus plus fort dans la région sylvian postérieure gauche (PSR) liée à un JOT correct.Dans "Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment" (Bernasconi et al., 2010a), et "Plastic brain mechanisms for attaining auditory temporal order judgment proficiency" (Bernasconi et al., 2010b), nous avons étudié la dynamique spatio-temporelle dans le cerveau impliqué dans le traitement du JOT auditif. Dans ses deux études, nous avons observé une modulation topographique à ~40ms après le début du premier son, en fonction de la performance JOT, indiquant l'engagement des configurations de générateurs intra- crâniens distincts. La localisation de source dans la première étude indique une activité bilatérale de PSR pour des JOT corrects vs. incorrects. Par ailleurs, l'activité dans PSR gauche, mais pas dans le droit, est corrélée avec la performance du JOT. La localisation de source dans la deuxième étude indiquait une latéralisation gauche induite par l'entraînement d'une réponse initialement bilatérale du cerveau. D'ailleurs, l'activité dans la région PSR gauche corrèlait avec la performance de TOJ.Basé sur ces résultats, nous proposons qu'un « timbre-temporel » soit établi très tôt (c.-à-d. à ~40ms) sur le premier son par le PSR gauche, mais module par l'activité du PSR droite (Bernasconi et al., 2010a ; b). « Le timbre- temporel » sur le premier son peut être établi par le mécanisme neuronal de type « sensory gating » ou « prior entry ».Les réponses comportementales et du cerveau aux stimuli identiques peut varier du à des modulations d'attention ou à des variations dans les paramètres des tâches ou au bruit interne du cerveau. Dans une quatrième expérience (Bernasconi et al. 2011B), nous avons étudié où et quand le »bruit neuronal« se manifeste pendant le traitement des stimuli. En contrastant les AEPs de sons identiques perçus comme aigus vs. grave, nous avons mesuré une modulation topographique à env. 100ms après l'apparition du son. L'estimation de source a révélé une activité dans les régions compatibles avec la discrimination de fréquences. Ainsi, nous avons fourni des preuves neurophysiologiques de la variation de la perception induite par le «bruit neuronal».
Resumo:
Recent evidence suggests the human auditory system is organized,like the visual system, into a ventral 'what' pathway, devoted toidentifying objects and a dorsal 'where' pathway devoted to thelocalization of objects in space w1x. Several brain regions have beenidentified in these two different pathways, but until now little isknown about the temporal dynamics of these regions. We investigatedthis issue using 128-channel auditory evoked potentials(AEPs).Stimuli were stationary sounds created by varying interaural timedifferences and environmental real recorded sounds. Stimuli ofeach condition (localization, recognition) were presented throughearphones in a blocked design, while subjects determined theirposition or meaning, respectively.AEPs were analyzed in terms of their topographical scalp potentialdistributions (segmentation maps) and underlying neuronalgenerators (source estimation) w2x.Fourteen scalp potential distributions (maps) best explained theentire data set.Ten maps were nonspecific (associated with auditory stimulationin general), two were specific for sound localization and two werespecific for sound recognition (P-values ranging from 0.02 to0.045).Condition-specific maps appeared at two distinct time periods:;200 ms and ;375-550 ms post-stimulus.The brain sources associated with the maps specific for soundlocalization were mainly situated in the inferior frontal cortices,confirming previous findings w3x. The sources associated withsound recognition were predominantly located in the temporal cortices,with a weaker activation in the frontal cortex.The data show that sound localization and sound recognitionengage different brain networks that are apparent at two distincttime periods.References1. Maeder et al. Neuroimage 2001.2. Michel et al. Brain Research Review 2001.3. Ducommun et al. Neuroimage 2002.
Resumo:
Résumé La levodopa (LD) est le traitement antiparkinsonien le plus efficace et le plus répandu. Son effet est composé d'une réponse de courte (quelques heures) et de longue durée (jours à semaines). La persistance de cette dernière dans les phases avancées de la maladie de Parkinson est controversée, et sa mesure directe n'a jamais été faite en raison des risques liés à un sevrage complet de LD. La stimulation du noyau sous-thalamique est un nouveau traitement neurochirurgical de la maladie de Parkinson, indiqué dans les formes avancées, qui permet l'arrêt complet du traitement médicamenteux chez certains patients. Nous avons étudié 30 patients qui ont bénéficié d'une telle stimulation, et les avons évalués avant l'intervention sans médicaments, et à 6 mois postopératoires, sans médicaments et sans stimulation. Chez 19 patients, la médication a pu être complètement arrêtée, alors qu'elle a dû être réintroduite chez les 11 patients restants. Au cours des 6 mois qui ont suivi l'intervention, le parkinsonisme s'est aggravé de façon significative dans le groupe sans LD, et non dans le groupe avec LD. Cette différence d'évolution s'explique par la perte de l'effet à long terme de la LD dans le groupe chez qui ce médicament a pu être arrêté. En comparant cette aggravation à la magnitude de l'effet à court terme, la réponse de longue durée correspond environ à 80 pourcent de la réponse de courte durée, et elle lui est inversement corrélée. Parmi les signes cardinaux de la maladie, la réponse de longue durée affecte surtout la bradycinésie et la rigidité, mais pas le tremblement ni la composante axiale. La comparaison du parkinsonisme avec traitement (stimulation et LD si applicable) ne montre aucune différence d'évolution entre les 2 groupes, suggérant que la stimulation compense tant la réponse de courte que de longue durée. Notre travail montre que la réponse de longue durée à la LD demeure significative chez les patients parkinsoniens après plus de 15 ans d'évolution, et suggère que la stimulation du noyau sous-thalamique compense les réponses de courte et de longue durée. Abstract Background: Long duration response to levodopa is supposed to decrease with Parkinson's disease (PD) progression, but direct observation of this response in advanced PD has never been performed. Objective: To study the long duration response to levodopa in advanced PD patients treated with subthalamic deep-brain stimulation. Design and settings: We studied 30 consecutive PD patients who underwent subthalamic deep-brain stimulation. One group had no antiparkinsonian treatment since surgery (no levodopa), while medical treatment had to be reinitiated in the other group (levodopa). Main outcome measures: motor Unified Parkinson's Disease Rating Scale (UPDRS). Results: In comparison with preoperative assessment, evaluation six months postoperatively with stimulation turned off for three hours found a worsening of the motor part of UPDRS in the no-levodopa group. This worsening being absent in the levodopa group, it most probably reflected the loss of the long duration response to levodopa in the no-levodopa group. Stimulation turned on, postoperative motor UPDRS in both groups were similar to preoperative on medication scores, suggesting that subthalamic deep-brain stimulation compensated for both the short and long duration responses to levodopa. Conclusions: Our results suggest that the long duration response to levodopa remains significant even in advanced PD, and that subthalamic deep-brain stimulation compensates for both the short and the long duration resposes to levodopa.
Resumo:
Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.
Resumo:
Résumé: Le développement rapide de nouvelles technologies comme l'imagerie médicale a permis l'expansion des études sur les fonctions cérébrales. Le rôle principal des études fonctionnelles cérébrales est de comparer l'activation neuronale entre différents individus. Dans ce contexte, la variabilité anatomique de la taille et de la forme du cerveau pose un problème majeur. Les méthodes actuelles permettent les comparaisons interindividuelles par la normalisation des cerveaux en utilisant un cerveau standard. Les cerveaux standards les plus utilisés actuellement sont le cerveau de Talairach et le cerveau de l'Institut Neurologique de Montréal (MNI) (SPM99). Les méthodes de recalage qui utilisent le cerveau de Talairach, ou celui de MNI, ne sont pas suffisamment précises pour superposer les parties plus variables d'un cortex cérébral (p.ex., le néocortex ou la zone perisylvienne), ainsi que les régions qui ont une asymétrie très importante entre les deux hémisphères. Le but de ce projet est d'évaluer une nouvelle technique de traitement d'images basée sur le recalage non-rigide et utilisant les repères anatomiques. Tout d'abord, nous devons identifier et extraire les structures anatomiques (les repères anatomiques) dans le cerveau à déformer et celui de référence. La correspondance entre ces deux jeux de repères nous permet de déterminer en 3D la déformation appropriée. Pour les repères anatomiques, nous utilisons six points de contrôle qui sont situés : un sur le gyrus de Heschl, un sur la zone motrice de la main et le dernier sur la fissure sylvienne, bilatéralement. Evaluation de notre programme de recalage est accomplie sur les images d'IRM et d'IRMf de neuf sujets parmi dix-huit qui ont participés dans une étude précédente de Maeder et al. Le résultat sur les images anatomiques, IRM, montre le déplacement des repères anatomiques du cerveau à déformer à la position des repères anatomiques de cerveau de référence. La distance du cerveau à déformer par rapport au cerveau de référence diminue après le recalage. Le recalage des images fonctionnelles, IRMf, ne montre pas de variation significative. Le petit nombre de repères, six points de contrôle, n'est pas suffisant pour produire les modifications des cartes statistiques. Cette thèse ouvre la voie à une nouvelle technique de recalage du cortex cérébral dont la direction principale est le recalage de plusieurs points représentant un sillon cérébral. Abstract : The fast development of new technologies such as digital medical imaging brought to the expansion of brain functional studies. One of the methodolgical key issue in brain functional studies is to compare neuronal activation between individuals. In this context, the great variability of brain size and shape is a major problem. Current methods allow inter-individual comparisions by means of normalisation of subjects' brains in relation to a standard brain. A largerly used standard brains are the proportional grid of Talairach and Tournoux and the Montreal Neurological Insititute standard brain (SPM99). However, there is a lack of more precise methods for the superposition of more variable portions of the cerebral cortex (e.g, neocrotex and perisyvlian zone) and in brain regions highly asymmetric between the two cerebral hemipsheres (e.g. planum termporale). The aim of this thesis is to evaluate a new image processing technique based on non-linear model-based registration. Contrary to the intensity-based, model-based registration uses spatial and not intensitiy information to fit one image to another. We extract identifiable anatomical features (point landmarks) in both deforming and target images and by their correspondence we determine the appropriate deformation in 3D. As landmarks, we use six control points that are situated: one on the Heschl'y Gyrus, one on the motor hand area, and one on the sylvian fissure, bilaterally. The evaluation of this model-based approach is performed on MRI and fMRI images of nine of eighteen subjects participating in the Maeder et al. study. Results on anatomical, i.e. MRI, images, show the mouvement of the deforming brain control points to the location of the reference brain control points. The distance of the deforming brain to the reference brain is smallest after the registration compared to the distance before the registration. Registration of functional images, i.e fMRI, doesn't show a significant variation. The small number of registration landmarks, i.e. six, is obvious not sufficient to produce significant modification on the fMRI statistical maps. This thesis opens the way to a new computation technique for cortex registration in which the main directions will be improvement of the registation algorithm, using not only one point as landmark, but many points, representing one particular sulcus.
Resumo:
Interactions between stimuli's acoustic features and experience-based internal models of the environment enable listeners to compensate for the disruptions in auditory streams that are regularly encountered in noisy environments. However, whether auditory gaps are filled in predictively or restored a posteriori remains unclear. The current lack of positive statistical evidence that internal models can actually shape brain activity as would real sounds precludes accepting predictive accounts of filling-in phenomenon. We investigated the neurophysiological effects of internal models by testing whether single-trial electrophysiological responses to omitted sounds in a rule-based sequence of tones with varying pitch could be decoded from the responses to real sounds and by analyzing the ERPs to the omissions with data-driven electrical neuroimaging methods. The decoding of the brain responses to different expected, but omitted, tones in both passive and active listening conditions was above chance based on the responses to the real sound in active listening conditions. Topographic ERP analyses and electrical source estimations revealed that, in the absence of any stimulation, experience-based internal models elicit an electrophysiological activity different from noise and that the temporal dynamics of this activity depend on attention. We further found that the expected change in pitch direction of omitted tones modulated the activity of left posterior temporal areas 140-200 msec after the onset of omissions. Collectively, our results indicate that, even in the absence of any stimulation, internal models modulate brain activity as do real sounds, indicating that auditory filling in can be accounted for by predictive activity.
Resumo:
Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.
Resumo:
Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4±2.3 to 5.4±2.9 mmol/L), pyruvate (126.9±65.1 to 172.3±74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27±6 to 35±9; all, p<0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r=0.56; p<0.0001), while an inverse correlation (r=-0.11; p=0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r=0.62 to r=0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.
Resumo:
RATIONALE: A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a well-documented neurobiological finding in major depression. Moreover, clinically effective therapy with antidepressant drugs may normalize the HPA axis activity. OBJECTIVE: The aim of this study was to test whether citalopram (R/S-CIT) affects the function of the HPA axis in patients with major depression (DSM IV). METHODS: Twenty depressed patients (11 women and 9 men) were challenged with a combined dexamethasone (DEX) suppression and corticotropin-releasing hormone (CRH) stimulation test (DEX/CRH test) following a placebo week and after 2, 4, and 16 weeks of 40 mg/day R/S-CIT treatment. RESULTS: The results show a time-dependent reduction of adrenocorticotrophic hormone (ACTH) and cortisol response during the DEX/CRH test both in treatment responders and nonresponders within 16 weeks. There was a significant relationship between post-DEX baseline cortisol levels (measured before administration of CRH) and severity of depression at pretreatment baseline. Multiple linear regression analyses were performed to identify the impact of psychopathology and hormonal stress responsiveness and R/S-CIT concentrations in plasma and cerebrospinal fluid (CSF). The magnitude of decrease in cortisol responsivity from pretreatment baseline to week 4 on drug [delta-area under the curve (AUC) cortisol] was a significant predictor (p<0.0001) of the degree of symptom improvement following 16 weeks on drug (i.e., decrease in HAM-D21 total score). The model demonstrated that the interaction of CSF S-CIT concentrations and clinical improvement was the most powerful predictor of AUC cortisol responsiveness. CONCLUSION: The present study shows that decreased AUC cortisol was highly associated with S-CIT concentrations in plasma and CSF. Therefore, our data suggest that the CSF or plasma S-CIT concentrations rather than the R/S-CIT dose should be considered as an indicator of the selective serotonergic reuptake inhibitors (SSRIs) effect on HPA axis responsiveness as measured by AUC cortisol response.
Resumo:
Whether the somatosensory system, like its visual and auditory counterparts, is comprised of parallel functional pathways for processing identity and spatial attributes (so-called what and where pathways, respectively) has hitherto been studied in humans using neuropsychological and hemodynamic methods. Here, electrical neuroimaging of somatosensory evoked potentials (SEPs) identified the spatio-temporal mechanisms subserving vibrotactile processing during two types of blocks of trials. What blocks varied stimuli in their frequency (22.5 Hz vs. 110 Hz) independently of their location (left vs. right hand). Where blocks varied the same stimuli in their location independently of their frequency. In this way, there was a 2x2 within-subjects factorial design, counterbalancing the hand stimulated (left/right) and trial type (what/where). Responses to physically identical somatosensory stimuli differed within 200 ms post-stimulus onset, which is within the same timeframe we previously identified for audition (De Santis, L., Clarke, S., Murray, M.M., 2007. Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. Cereb Cortex 17, 9-17.). Initially (100-147 ms), responses to each hand were stronger to the what than where condition in a statistically indistinguishable network within the hemisphere contralateral to the stimulated hand, arguing against hemispheric specialization as the principal basis for somatosensory what and where pathways. Later (149-189 ms) responses differed topographically, indicative of the engagement of distinct configurations of brain networks. A common topography described responses to the where condition irrespective of the hand stimulated. By contrast, different topographies accounted for the what condition and also as a function of the hand stimulated. Parallel, functionally specialized pathways are observed across sensory systems and may be indicative of a computationally advantageous organization for processing spatial and identity information.