141 resultados para epilepsy, hippocampus, dopamine, methylxanthines, GABA
C/EBPbeta couples dopamine signalling to substance P precursor gene expression in striatal neurones.
Resumo:
Dopamine-induced changes in striatal gene expression are thought to play an important role in drug addiction and compulsive behaviour. In this study we report that dopamine induces the expression of the transcription factor CCAAT/Enhancer Binding Protein beta (C/EBP)-beta in primary cultures of striatal neurones. We identified the preprotachykinin-A (PPT-A) gene coding for substance P and neurokinin-A as a potential target gene of C/EBPbeta. We demonstrated that C/EBPbeta physically interacts with an element of the PPT-A promoter, thereby facilitating substance P precursor gene transcription. The regulation of PPT-A gene by C/EBPbeta could subserve many important physiological processes involving substance P, such as nociception, neurogenic inflammation and addiction. Given that substance P is known to increase dopamine signalling in the striatum and, in turn, dopamine increases substance P expression in medium spiny neurones, our results implicate C/EBPbeta in a positive feedback loop, changes of which might contribute to the development of drug addiction.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.
Resumo:
Using immunohistology, electron microscopy, electrophysiology and optogenetics, we found that proliferating adult mouse hippocampal neural precursors received immature GABAergic synaptic inputs from parvalbumin-expressing interneurons. Recently shown to suppress adult quiescent neural stem cell activation, parvalbumin interneuron activation promoted newborn neuronal progeny survival and development. Our results suggest a niche mechanism involving parvalbumin interneurons that couples local circuit activity to the diametric regulation of two critical early phases of adult hippocampal neurogenesis.
Resumo:
Hippocampal adult neurogenesis results in the continuous formation of new neurons in the adult hippocampus, which participate to learning and memory. Manipulations increasing adult neurogenesis have a huge clinical potential in pathologies involving memory loss. Intringuingly, most of the newborn neurons die during their maturation. Thus, increasing newborn neuron survival during their maturation may be a powerful way to increase overall adult neurogenesis. The factors governing this neuronal death are yet poorly known. In my PhD project, we made the hypothesis that synaptogenesis and synaptic activity play a role in the survival of newborn hippocampal neurons. We studied three factors potentially involved in the regulation of the synaptic integration of adult-born neurons. First, we used propofol anesthesia to provoke a global increase in GABAergic activity of the network, and we evaluated the outcome on newborn neuron synaptic integration, morphological development and survival. Propofol anesthesia impaired the dendritic maturation and survival of adult-born neurons in an age-dependent manner. Next, we examined the development of astrocytic ensheathment on the synapses formed by newborn neurons, as we hypothesized that astrocytes are involved in their synaptic integration. Astrocytic processes ensheathed the synapses of newborn neurons very early in their development, and the processes modulated synaptic transmission on these cells. Finally, we studied the cell-autonomous effects of the overexpression of synaptic adhesion molecules on the development, synaptic integration and survival of newborn neurons, and we found that manipulating of a single adhesion molecule was sufficient to modify synaptogenesis and/or synapse function, and to modify newborn neuron survival. Together, these results suggest that the activity of the neuronal network, the modulation of glutamate transport by astrocytes, and the synapse formation and activity of the neuron itself may regulate the survival of newborn neurons. Thus, the survival of newborn neurons may depend on their ability to communicate with the network. This knowledge is crucial for finding ways to increase neurogenesis in patients. More generally, understanding how the neurogenic niche works and which factors are important for the generation, maturation and survival of neurons is fundamental to be able to maybe, one day, replace neurons in any region of the brain.
Resumo:
OBJECTIVES: Depression has been consistently reported in people with epilepsy. Several studies also suggest a higher burden of cardiovascular diseases. We therefore analysed psychosocial co-morbidity and cardiovascular risk factors in patients with a lifetime history of epilepsy in the PsyCoLaus study, a Swiss urban population-based assessment of mental health and cardiovascular risk factors in adults aged between 35 and 66 years. PATIENTS AND METHODS: Among 3719 participants in the PsyCoLaus study, we retrospectively identified those reporting at least 2 unprovoked seizures, defined as epilepsy. These subjects were compared to all others regarding psychiatric, social, and cardiovascular risk factors data using uni- and multivariable assessments. RESULTS: A significant higher need for social help (p<0.001) represented the only independent difference between 43 subjects with a history of epilepsy and 3676 controls, while a higher prevalence of psychiatric co-morbidities (p=0.015) and a lower prevalent marital status (p=0.01) were only significant on univariate analyses. Depression and cardio-vascular risk factors, as well as educational level and employment, were similar among the groups. CONCLUSIONS: This analysis confirms an increased prevalence of psychosocial burden in subjects with a lifetime history of epilepsy; conversely, we did not find a higher cardiovascular risk. The specific urban and geographical location of our cohort and the age span of the studied population may account for the differences from previous studies.
Resumo:
We report on a patient who developed, from 5 months of age, multiple seizure types, including myoclonic, associated with severe psychomotor delay, leading to the diagnosis of Dravet syndrome. Over the years, he developed refractory epilepsy and was implanted with a vagus nerve stimulator at the age of 19. After 3 months, he experienced a progressive improvement of partial and generalized seizures, with a >90% reduction, and better alertness. This meaningful clinical improvement is discussed in the light of the sudden unexpected death in epilepsy risk, which is high in this setting, and seems remarkably diminished in our patient in view of the reduction of generalized convulsions.
Resumo:
Tissue-targeted expression is of major interest for studying the contribution of cellular subpopulations to neurodegenerative diseases. However, in vivo methods to investigate this issue are limited. Here, we report an analysis of the cell specificity of expression of fluorescent reporter genes driven by six neuronal promoters, with the ubiquitous phosphoglycerate kinase 1 (PGK) promoter used as a reference. Quantitative analysis of AcGFPnuc expression in the striatum and hippocampus of rodents showed that all lentiviral vectors (LV) exhibited a neuronal tropism; however, there was substantial diversity of transcriptional activity and cell-type specificity of expression. The promoters with the highest activity were those of the 67 kDa glutamic acid decarboxylase (GAD67), homeobox Dlx5/6, glutamate receptor 1 (GluR1), and preprotachykinin 1 (Tac1) genes. Neuron-specific enolase (NSE) and dopaminergic receptor 1 (Drd1a) promoters showed weak activity, but the integration of an amplification system into the LV overcame this limitation. In the striatum, the expression profiles of Tac1 and Drd1a were not limited to the striatonigral pathway, whereas in the hippocampus, Drd1a and Dlx5/6 showed the expected restricted pattern of expression. Regulation of the Dlx5/6 promoter was observed in a disease condition, whereas Tac1 activity was unaffected. These vectors provide safe tools that are more selective than others available, for the administration of therapeutic molecules in the central nervous system (CNS). Nevertheless, additional characterization of regulatory elements in neuronal promoters is still required.
Resumo:
Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.
Resumo:
Neuropathic pain is a major health issue and is frequently accompanied by allodynia (painful sensations in response to normally non-painful stimulations), and unpleasant paresthesia/dysesthesia, pointing to alterations in sensory pathways normally dedicated to the processing of non-nociceptive information. Interestingly, mounting evidence indicate that central glial cells are key players in allodynia, partly due to changes in the astrocytic capacity to scavenge extracellular glutamate and gamma-aminobutyric acid (GABA), through changes in their respective transporters (EAAT and GAT). In the present study, we investigated the glial changes occurring in the dorsal column nuclei, the major target of normally innocuous sensory information, in the rat spared nerve injury (SNI) model of neuropathic pain. We report that together with a robust microglial and astrocytic reaction in the ipsilateral gracile nucleus, the GABA transporter GAT-1 is upregulated with no change in GAT-3 or glutamate transporters. Furthermore, [(3)H] GABA reuptake on crude synaptosome preparation shows that transporter activity is functionally increased ipsilaterally in SNI rats. This GAT-1 upregulation appears evenly distributed in the gracile nucleus and colocalizes with astrocytic activation. Neither glial activation nor GAT-1 modulation was detected in the cuneate nucleus. Together, the present results point to GABA transport in the gracile nucleus as a putative therapeutic target against abnormal sensory perceptions related to neuropathic pain.
Resumo:
We investigated the contribution of postictal memory testing for lateralizing the epileptic focus and predicting memory outcome after surgery for temporal lobe epilepsy (TLE). Forty-five patients with TLE underwent interictal, postictal, and postoperative assessment of verbal and nonverbal memory. Surgery consisted of anterior temporal lobectomy (36), selective isolated amygdalohippocampectomy (6), or amygdalohippocampectomy coupled to lesionectomy (3). Postictal and postoperative but not interictal memory were significantly lower in left TLE than in right TLE. Nonverbal memory showed no significant difference in left TLE versus right TLE in all conditions. Postictal memory was significantly correlated with postoperative memory, but the effect disappeared when the lateralization of the focus was considered. Postictal verbal memory is a useful bedside tool that can help lateralize the epileptic focus. Larger studies are needed to further estimate its predictive value of the postoperative outcome.
Resumo:
The dopamine antagonist [3H]-domperidone-[3H]-DOM-bound to a single class of high-affinity (Kd = 1.24 +/- 0.14 nM) and saturable receptors on dispersed bovine anterior pituitary (AP) cells. The binding of [3H]-DOM was stereoselective and reversible with agonists and antagonists. Dopamine competitions for [3H]-DOM binding modeled best for a single site consistent with an interaction with a homogeneous population of receptors. The mean number of specific binding sites labeled by [3H]-DOM was 53,000 per cell in dispersed AP cells consisting of 42% lactotrophs. Dispersed bovine AP cells attached to extracellular matrix within 3 h, and prolactin secretion from these cells was effectively inhibited by dopamine. Several observations suggested that [3H]-DOM-labeled receptors on dispersed bovine AP cells were restricted to the outer plasma membrane and not internalized. These included (1) the rapid and complete dissociation of specific [3H]-DOM binding; (2) the ability of treatment with acid or proteolytic enzymes to entirely remove specifically bound [3H]-DOM, and (3) the lack of effect of metabolic inhibitors on specific [3H]-DOM binding.