137 resultados para current solution
Resumo:
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots
Resumo:
BACKGROUND: Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. NEW METHOD: The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. RESULTS: Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. COMPARISON WITH EXISTING METHOD(S): Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). CONCLUSIONS: Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities.
Resumo:
The treatment of multiple myeloma has undergone significant changes in the recent past. The arrival of novel agents, especially thalidomide, bortezomib and lenalidomide, has expanded treatment options and patient outcomes are improving significantly. This article summarises the discussions of an expert meeting which was held to debate current treatment practices for multiple myeloma in Switzerland concerning the role of the novel agents and to provide recommendations for their use in different treatment stages based on currently available clinical data. Novel agent combinations for the treatment of newly diagnosed, as well as relapsed multiple myeloma are examined. In addition, the role of novel agents in patients with cytogenetic abnormalities and renal impairment, as well as the management of the most frequent side effects of the novel agents are discussed. The aim of this article is to assist in treatment decisions in daily clinical practice to achieve the best possible outcome for patients with multiple myeloma.
Resumo:
The benefit of postoperative radiotherapy (RT) has been demonstrated in elderly patients aged 65 years or older with glioblastoma multiforme. Hypofractionated RT schedules can reduce the time and morbidity of treatment while maintaining comparable survival outcomes to lengthy conventional RT. Current international randomized clinical trials are studying the optimized hypofractionated RT regimens, hypofractionated RT in comparison with temozolomide chemotherapy and hypofractionated RT in comparison with the same RT plus temozolomide. Given the guarded prognosis of the elderly and frail patients, quality of life and side effects of treatment should be closely examined. As more than half of cancers in the world occur in developing countries, hypofractionated RT could be better utilized as a cost-effective treatment for this group of patients.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
An enormous burst of interest in the public health burden from chronic disease in Africa has emerged as a consequence of efforts to estimate global population health. Detailed estimates are now published for Africa as a whole and each country on the continent. These data have formed the basis for warnings about sharp increases in cardiovascular disease (CVD) in the coming decades. In this essay we briefly examine the trajectory of social development on the continent and its consequences for the epidemiology of CVD and potential control strategies. Since full vital registration has only been implemented in segments of South Africa and the island nations of Seychelles and Mauritius - formally part of WHO-AFRO - mortality data are extremely limited. Numerous sample surveys have been conducted but they often lack standardization or objective measures of health status. Trend data are even less informative. However, using the best quality data available, age-standardized trends in CVD are downward, and in the case of stroke, sharply so. While acknowledging that the extremely limited available data cannot be used as the basis for inference to the continent, we raise the concern that general estimates based on imputation to fill in the missing mortality tables may be even more misleading. No immediate remedies to this problem can be identified, however bilateral collaborative efforts to strength local educational institutions and governmental agencies rank as the highest priority for near term development.
Resumo:
In order to prevent allograft rejection, most current immunosuppressive drugs nonspecifically target T-cell activation, clonal expansion or differentiation into effector cells. Experimental models have shown that it is possible to exploit the central and peripheral mechanisms that normally maintain immune homeostasis and tolerance to self-antigens, in order to induce tolerance to alloantigens. Central tolerance results from intrathymic deletion of T cells with high avidity for thymically expressed antigens. Peripheral tolerance to nonself-molecules can be achieved by various mechanisms including deletion of activated/effector T cells, anergy induction and active regulation of effector T cells. In this article, we briefly discuss the pathways of allorecognition and their relevance to current immunosuppressive strategies and to the induction of transplantation tolerance (through haematopoietic mixed chimerism, depleting protocols, costimulatory blockade and regulatory T cells). We then review the prospect of clinical applicability of these protocols in solid organ transplantation.
Resumo:
The notion of "First Responder" (FR) refers to the system of first-aid volunteers who act to initiate the first-aid care before the classical emergency help arrives. In 2011, the French-speaking Switzerland counts 19 groups, divided up between four cantons (Fribourg, Vaud, Neuchâtel, Valais). The geographical distribution of those FR shows the stakes of these peripherical areas, with the accessibility difficulties for the emergency services, and a low demography of ambulances and doctors. The number of interventions carried out by the FR has significantly increased during the last years. The association of a quality formation, an excellent knowledge of the ground and a quick intervention has a positive impact on the survival of the patients with vital emergency or traumatic conditions.
Resumo:
Even though anal incontinence affects a significant proportion of the population, causing a major burden to both patient and society, it still remains "the last closet issue". Less than a third of patients will share this problem with their physician. Consequently, the incidence of anal incontinence is difficult to determine, varying from 2-50%. Since this disabling condition is often associated with urinary incontinence and/or pelvic organ prolapse, a multidisciplinary team approach is required. A wide range of therapeutic options are available. When dietary, medical and rehabilitative treatments have failed, sacral neuromodulation should be considered in selected cases. More invasive surgery is usually undertaken in the presence of major structural defects. The aim of this article is to suggest a comprehensive way of identifying and treating anal incontinence.
Resumo:
PURPOSE: The combination of embolic beads with a multitargeted tyrosine kinase inhibitor that inhibits tumor vessel growth is suggested as an alternative and improvement to the current standard doxorubicin-eluting beads for use in transarterial chemoembolization. This study demonstrates the in vitro loading and release kinetics of sunitinib using commercially available embolization microspheres and evaluates the in vitro biologic efficacy on cell cultures and the resulting in vivo pharmacokinetics profiles in an animal model. MATERIALS AND METHODS: DC Bead microspheres, 70-150 µm and 100-300 µm (Biocompatibles Ltd., Farnham, United Kingdom), were loaded by immersion in sunitinib solution. Drug release was measured in saline in a USP-approved flow-through apparatus and quantified by spectrophotometry. Activity after release was confirmed in cell culture. For pharmacokinetics and in vivo toxicity evaluation, New Zealand white rabbits received sunitinib either by intraarterial injection of 100-300 µm sized beads or per os. Plasma and liver tissue drug concentrations were assessed by liquid chromatography-tandem mass spectroscopy. RESULTS: Sunitinib loading on beads was close to complete and homogeneous. A total release of 80% in saline was measured, with similar fast-release profiles for both sphere sizes. After embolization, drug plasma levels remained below the therapeutic threshold (< 50 ng/mL), but high concentrations at 6 hours (14.9 µg/g) and 24 hours (3.4 µg/g) were found in the liver tissue. CONCLUSIONS: DC Bead microspheres of two sizes were efficiently loaded with sunitinib and displayed a fast and almost complete release in saline. High liver drug concentrations and low systemic levels indicated the potential of sunitinib-eluting beads for use in embolization.
Resumo:
In 1980 the World Health Organization declared that smallpox was eradicated from the world, and routine smallpox vaccination was discontinued. Nevertheless, samples of the smallpox virus (variola virus) were retained for research purposes, not least because of fears that terrorist groups or rogue states might also have kept samples in order to develop a bioweapon. Variola virus represents an effective bioweapon because it is associated with high morbidity and mortality and is highly contagious. Since September 11, 2001, countries around the world have begun to develop policies and preparedness programs to deal with a bioterror attack, including stockpiling of smallpox vaccine. Smallpox vaccine itself may be associated with a number of serious adverse events, which can often be managed with vaccinia immune globulin (VIG). VIG may also be needed as prophylaxis in patients for whom pre-exposure smallpox vaccine is contraindicated (such as those with eczema or pregnant women), although it is currently not licensed in these cases. Two intravenous formulations of VIG (VIGIV Cangene and VIGIV Dynport) have been licensed by the FDA for the management of patients with progressive vaccinia, eczema vaccinatum, severe generalized vaccinia, and extensive body surface involvement or periocular implantation following inadvertent inoculation.