154 resultados para bumpless switch
Resumo:
BACKGROUND: There is some evidence that dextromethorphan (DM) is effective as a pre-emptive analgesic agent. DM is mainly metabolized to dextrorphan (DOR) by CYP2D6 whose activity can be inhibited by pharmacologic intervention. OBJECTIVES: To investigate the efficacy of DM as a pre-emptive analgesic agent and describe the population pharmacokinetics in the presence of normal and poor CYP2D6 metabolism in acute post-operative pain. STUDY DESIGN: Double blind, randomized, placebo-controlled trial SETTING: Post-surgical analgesic consumption after knee ligament surgery, a setting of acute pain. METHODS: Forty patients were randomized to a single oral dose of 50 mg quinidine or placebo, administered 12 hours before 50 mg DM. Patients were genotyped for the major CYP2D6 and ABCB1 variants and phenotyped for CYP2D6 using urine DM/DOR metabolic ratios and blood samples for population pharmacokinetic modeling. RESULTS: Quinidine was effective in inhibiting CYP2D6 activity, with 2-fold reduction of DM to DOR biotransformation clearance, prolonged DM half-life, and increased DM systemic availability. Patients in the quinidine group required significantly less often NSAIDs than patients in the placebo group (35.3% vs. 75.0%, P = 0.022). The odds ratio for NSAID consumption in the placebo vs. quinidine group was 5.5 (95% confidence interval (CI) 1.3 - 22.7) at 48 hours after surgery. LIMITATIONS: While this study shows an impact of DM on pre-emptive analgesia and is mechanistically interesting, the findings need to be confirmed in larger trials. CONCLUSION: CYP2D6 inhibition by quinidine influenced the pre-emptive analgesic effectiveness of DM confirming that CYP2D6 phenotypic switch increases the neuromodulatory effect of oral dextromethorphan.
Resumo:
Recent evidence for genetic effects on royal and worker caste differentiation from diverse social insect taxa has put an end to the view that these phenotypes stem solely from a developmental switch controlled by environmental factors. Instead, the relative influences of genotypic and environmental effects on caste vary among species, ranging from largely environmentally controlled phenotypes to almost purely genetic systems. Disentangling the selective forces that generate variation for caste predisposition will require characterizing the genetic mechanisms underlying this variation, and identifying particular life-history strategies and kin structures associated with strong genetic effects on caste.
Resumo:
Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.
Resumo:
BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.
Resumo:
Introduction: Swiss data indicate that one fifth of current 16-20 yearold cannabis users do not use tobacco and seem to do better than those smoking both substances. The aim of this research is to assess the substance use trajectories of cannabis users who do not use tobacco and those who use both substances from age 17 to age 23. Methods: Using data from the TREE longitudinal data base, 328 out of 1796 youth 18.3%; 45% females) who smoked cannabis only (Group CAN; N = 46; 36% females) or concurrently with tobacco (Group CANTAB; N = 284; 46% females) at T1 (2001; age 17) were followed at T4 (2004; age 20) and T7 (2007; age 23). Two additional outcome groups were included at T4 and T7: those using only tobacco (Group TOB) and those not using any of these substances (Group NONE). Data were analyzed separately by gender. Results: Females in group CAN at T1 were as likely to be in group TOB (35%) or NONE (35%) at T4 and the percentages increased to 41% and 47%, respectively, at T7. Males in group CAN at T1 were more likely to be in group TOB at T4 (33%) and T7 (61%) than in group NONE (23% and 15%, respectively). Females in group CANTOB at T1 were mainly in group TOB at T4 (52%) and T7 (61%), while males in CANTOB at T1 remained mainly in the same group at T4 (75%) and T7 (61%). Only 10% of females and 5% of males in group CANTOB at T1 were in group NONE at T4 and 15% and 12%, respectively, at T7. Conclusions: Adolescents using only cannabis are globally less likely to continue using cannabis in young adulthood than those using both substances, although a fair percentage (specially males) switch to tobacco use. This result confirms previous research indicating that nicotine dependence and persistent cigarette smoking may be the main public health consequences of cannabis use. A gender difference arises among those using tobacco and cannabis at age 17: while females become mainly tobacco smokers, the majority of males continue to use both substances. Although these results could be explained by a substitution effect, teenagers using both substances seem to have gone beyond the experimentation phase and should be a motive for concern.
Resumo:
Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.
Resumo:
Infectious complications related to acquired neutropenia have become a major medical issue, often requiring intensive care management. These infections may be lethal if empirical broad-spectrum treatment is not rapidly started at the first sign of infection (i.e., fever), and this concept is now widely recognized a standard practice. However, the choice of antibiotics has generated considerable controversy for nearly 25 years. After reviewing some particularities of infection in neutropenic patients, this paper will discuss the options and present comprehensive algorithm for non-infectious diseases specialist, including recent advances about early IV-oral switch and the selection of low risk patients for outpatient management.
Resumo:
Background: The 2007 European Crohn's and Colitis Organization guidelines on anemia in inflammatory bowel disease (IBD) favour intravenous (iv) over oral (po) iron supplementation due to better effectiveness and tolerance. We aimed to determine the percentage of IBD patients under iron supplementation therapy and the dynamics of prescription habits (iv versus po) over time. Methods: Helsana, a leading Swiss health insurance company provides coverage for approximately 18% of the Swiss population, corresponding to about 1.2 million enrollees. Patients with Crohn's disease (CD) and ulcerative colitis (UC) were analyzed from the anonymised Helsana database. Results: In total, 629 CD (61% female) and 398 UC (57% female) patients were identified, mean observation time was 31.8 months for CD and 31.0 months for UC patients. Of the entire study population, 27.1% were prescribed iron (21.1% in males and 31.1% in females). Patients treated with IBDspecific drugs (steroids, immunomodulators, anti-TNF agents) were more frequently treated with iron compared to patients without any medication (35.0% vs. 20.9%, OR 1.91, 95%- CI 1.41 2.61). The prescription of iv iron increased from 2006/2007 (48.8% of all patients receiving any iron priscription) to 65.2% in 2008/2009 by a factor of 1.89. Conclusions: One third of the IBD population was treated with iron supplementation. A gradual shift from oral to iv iron was observed over time. This switch in prescription habits goes along with the implementation of the ECCO consensus guidelines on anemia in IBD.
Resumo:
Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption. However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and pathological conditions in order to face evolving energy demands.
Resumo:
This paper focuses on the switching behaviour of enrolees in the Swiss basic health insurance system. Even though the new Federal Law on Social Health Insurance (LAMal) was implemented in 1996 to promote competition among health insurers in basic insurance, there is limited evidence of premium convergence within cantons. This indicates that competition has not been effective so far, and reveals some inertia among consumers who seem reluctant to switch to less expensive funds. We investigate one possible barrier to switching behaviour, namely the influence of supplementary insurance. We use survey data on health plan choice (a sample of 1943 individuals whose switching behaviours were observed between 1997 and 2000) as well as administrative data relative to all insurance companies that operated in the 26 Swiss cantons between 1996 and 2005. The decision to switch and the decision to subscribe to a supplementary contract are jointly estimated.Our findings show that holding a supplementary insurance contract substantially decreases the propensity to switch. However, there is no negative impact of supplementary insurance on switching when the individual assesses his/her health as 'very good'. Our results give empirical support to one possible mechanism through which supplementary insurance might influence switching decisions: given that subscribing to basic and supplementary contracts with two different insurers may induce some administrative costs for the subscriber, holding supplementary insurance acts as a barrier to switch if customers who consider themselves 'bad risks' also believe that insurers reject applications for supplementary insurance on these grounds. In comparison with previous research, our main contribution is to offer a possible explanation for consumer inertia. Our analysis illustrates how consumer choice for one's basic health plan interacts with the decision to subscribe to supplementary insurance.
Resumo:
BAFF, APRIL and their receptors play important immunological roles, especially in the B cell arm of the immune system. A number of splice isoforms have been described for both ligands and receptors in this subfamily, some of which are conserved between mouse and human, while others are species-specific. Structural and mutational analyses have revealed key determinants of receptor-ligand specificity. BAFF-R has a strong selectivity for BAFF; BCMA has a higher affinity for APRIL than for BAFF, while TACI binds both ligands equally well. The molecular signaling events downstream of BAFF-R, BCMA and TACI are still incompletely characterized. Survival appears to be mediated by upregulation of Bcl-2 family members through NF-kappaB activation, degradation of the pro-apototic Bim protein, and control of subcellular localization of PCKdelta. Very little is known about other signaling events associated with receptor engagement by BAFF and APRIL that lead for example to B cell activation or to CD40L-independent Ig switch.
Resumo:
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.
Resumo:
Switching from one functional or cognitive operation to another is thought to rely on executive/control processes. The efficacy of these processes may depend on the extent of overlap between neural circuitry mediating the different tasks; more effective task preparation (and by extension smaller switch costs) is achieved when this overlap is small. We investigated the performance costs associated with switching tasks and/or switching sensory modalities. Participants discriminated either the identity or spatial location of objects that were presented either visually or acoustically. Switch costs between tasks were significantly smaller when the sensory modality of the task switched versus when it repeated. This was the case irrespective of whether the pre-trial cue informed participants only of the upcoming task, but not sensory modality (Experiment 1) or whether the pre-trial cue was informative about both the upcoming task and sensory modality (Experiment 2). In addition, in both experiments switch costs between the senses were positively correlated when the sensory modality of the task repeated across trials and not when it switched. The collective evidence supports the independence of control processes mediating task switching and modality switching and also the hypothesis that switch costs reflect competitive interference between neural circuits.
Resumo:
Analysis of genetically engineered mice deficient in cell cycle regulators, including E2F1, cdk4, and pRB, showed that the major phenotypes are metabolic perturbations. These key cell cycle regulators contribute to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism. It has been shown that deregulation of these pathways can lead to metabolic perturbations and related metabolic diseases, such as obesity and type II diabetes. The cyclin-cdk-Rb-E2F1 pathway regulates adipogenesis in addition to its well-described roles in cell cycle regulation and cancer. It was also shown that E2F1 directly participates in the regulation of pancreatic growth and function. Similarly, cyclin D3, cdk4, and cdk9 are also adipogenic factors with strong effects on whole organism metabolism. These examples support the emerging notion that cell cycle regulatory proteins also modulate metabolic processes. These cell cycle regulators are activated by insulin and glucose, even in non-proliferating cells. Most importantly, these cell cycle regulators trigger the adaptive metabolic switch that normal and cancer cells require in order to proliferate. These changes include increased lipid synthesis, decreased oxidative metabolism, and increased glycolytic metabolism. In summary, these factors are essential regulators of anabolic biosynthetic processes, blocking at the same time oxidative and catabolic pathways, which is reminiscent of cancer cell metabolism.
Resumo:
Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth.