180 resultados para Virtual Memory
Resumo:
1. SUMMARY Based on functional and homing properties, two subsets of memory T lymphocytes have been defined both in humans and in mice. Central memory T cells (TCM cells) express the lymph node homing receptors CD62L and CCR7, have poor effector function and proliferate efficiently upon antigenic stimulation. Effector memory T cells (TEM cells) do not express CCR7, are mostly CD62L negative and therefore are excluded from lymph nodes, but are able to migrate to sites of inflammation where they exert immediate effector function by producing inflammatory cytokines and cytotoxic mediators. In the present work we have addressed two questions that emerged since the definition of TCM and TEM cells. Firstly, what are the priming conditions for generation of TCM and TEM and, secondly, what is the migratory capacity of TCM and TEM cells in inflammatory conditions. By using naive TCR-transgenic OT-I CD8+ T cells and OT-II CD4+ T cells and ovalbumin pulsed-mature dendritic cells (DCs) we set up an in vitro system in which the strength of T cell stimulation is controlled by varying the ratio of T cells and DCs and the duration of DC-T cell interaction. Using this system we found that precursors of TCM and TEM cells are generated at different strength of stimulation and that T cells capable of persisting in vivo in the absence of antigen and of mounting recall responses is optimally induced by intermediate stimulatory strength. In addition, we found that lymph nodes draining sites of mature DC or adjuvant inoculation recruit CD8+ CD62L- CCR7- effector and TEM cells. CD8+ T cell recruitment in reactive lymph nodes requires CXCR3 expression on T cells and occurs through high endothelial venules (HEVs) in concert with HEV lurninal expression of the CXCR3 ligand CXCL9. In reactive lymph nodes, recruited T cells establish stable interactions with and kill antigen-bearing DCs, limiting the ability of these DCs to activate CD4+ and CD8+ T cells. Taken togther these data define conditions for the generation of TCM and TEM cells and define an inflammatory pathway of effector T cell migration in lymph nodes. The inducible recruitment of blood-borne effector and TEM CD8+ cells to lymph nodes may represent a mechanism for terminating primary and limiting secondary immune responses.
Resumo:
INTRODUCTION: Partial splenectomy in children is a good surgical option for hematological diseases and focal splenic tumors because it allows the preservation of the spleen's immunological function. Furthermore, it can be performed by laparoscopy in children as it is a safe procedure, offering the benefits of a minimally invasive approach. MATERIALS AND METHODS: The software VR-render LE version 0.81 is a system that enables the visualization of bidimentional 3D images with magnification of anatomical details. We have applied this system to five cases of non-parasitic splenic cysts before laparoscopic partial splenectomy. RESULTS: The images obtained with VR rendering software permitted the preoperative reconstruction of the vascularization of the splenic hilum, allowing the surgeon safe vessel control during laparoscopic procedures. All five partial splenectomies were carried out with no complications or major blood loss. CONCLUSIONS: Laparoscopic partial splenectomy should be a first choice procedure because it is feasible, reproducible, and safe for children; furthermore, it preserves enough splenic tissue thereby preventing post-splenectomy infections. Volume rendering provides high anatomical resolution and can be useful in guiding the surgical procedure.
Resumo:
Background: Earlier contributions have documented significant changes in sensory, attention-related endogenous event-related potential (ERP) components and θ band oscillatory responses during working memory activation in patients with schizophrenia. In patients with first-episode psychosis, such studies are still scarce and mostly focused on auditory sensory processing. The present study aimed to explore whether subtle deficits of cortical activation are present in these patients before the decline of working memory performance. Methods: We assessed exogenous and endogenous ERPs and frontal θ event-related synchronization (ERS) in patients with first-episode psychosis and healthy controls who successfully performed an adapted 2-back working memory task, including 2 visual n-backworking memory tasks as well as oddball detection and passive fixation tasks. Results: We included 15 patients with first-episode psychosis and 18 controls in this study. Compared with controls, patients with first-episode psychosis displayed increased latencies of early visual ERPs and phasic θ ERS culmination peak in all conditions. However, they also showed a rapid recruitment of working memory-related neural generators, even in pure attention tasks, as indicated by the decreased N200 latency and increased amplitude of sustained θ ERS in detection compared with controls. Limitations: Owing to the limited sample size, no distinction was made between patients with first-episode psychosis with positive and negative symptoms. Although we controlled for the global load of neuroleptics, medication effect cannot be totally ruled out. Conclusion: The present findings support the concept of a blunted electroencephalographic response in patients with first-episode psychosis who recruit the maximum neural generators in simple attention conditions without being able to modulate their brain activation with increased complexity of working memory tasks.
Resumo:
OBJECTIVE: To determine in chimpanzees if candidate HIV-1 subunit protein vaccines were capable of eliciting long-lasting T-cell memory responses in the absence of viral infection, and to determine the specific characteristics of these responses. DESIGN: A longitudinal study of cell-mediated immune responses induced in three chimpanzees following immunization with subunit envelope glycoproteins of either HIV-1 or herpes simplex virus (HSV)-2. Following these pre-clinical observations, four human volunteers who had been immunized 7 years previously with the same HIV-1 vaccine candidate donated blood for assessment of immune responses. METHODS: Responses were monitored by protein and peptide based ELISpot assays, lymphocyte proliferation, and intracellular cytokine staining. Humoral responses were assessed by enzyme-linked immunosorbent assay and virus neutralization assays. RESULTS: Although antigen (Ag)-specific CD4 T-cell responses persisted for at least 5 years in chimpanzees, CD8 T-cell responses were discordant and declined within 2 years. Detailed cellular analyses revealed that strong Th1 in addition to Th2 type responses were induced by AS2/gp120 and persisted, whereas CD8 T-cell memory declined in peripheral blood. The specificity of both Th and cytotoxic T-lymphocyte responses revealed that the majority of responses were directed to conserved epitopes. The remarkable persistence of Ag-specific CD4 T-cell memory was characterized as a population of the CD45RA-CD62L-CCR7- "effector phenotype" producing the cytokines IFNgamma, IL-2 and IL-4 upon epitope-specific recognition. Importantly, results in chimpanzees were confirmed in peripheral blood of one of four human volunteers studied more than 7 years after immunization. CONCLUSION: These studies demonstrate that epitope-specific Th1 and Th2 cytokine-dependent Th responses can be induced and maintained for longer than 5 years by immunization with subunit proteins of HIV-1.
Resumo:
Recently, modern cross-sectional imaging techniques such as multi-detector computed tomography (MDCT) have pioneered post mortem investigations, especially in forensic medicine. Such approaches can also be used to investigate bones non-invasively for anthropological purposes. Long bones are often examined in forensic cases because they are frequently discovered and transferred to medico-legal departments for investigation. To estimate their age, the trabecular structure must be examined. This study aimed to compare the performance of MDCT with conventional X-rays to investigate the trabecular structure of long bones. Fifty-two dry bones (24 humeri and 28 femora) from anthropological collections were first examined by conventional X-ray, and then by MDCT. Trabecular structure was evaluated by seven observers (two experienced and five inexperienced in anthropology) who analyzed images obtained by radiological methods. Analyses contained the measurement of one quantitative parameter (caput diameter of humerus and femur) and staging the trabecular structure of each bone. Preciseness of each technique was indicated by describing areas of trabecular destruction and particularities of the bones, such as pathological changes. Concerning quantitative parameters, the measurements demonstrate comparable results for the MDCT and conventional X-ray techniques. In contrast, the overall inter-observer reliability of the staging was low with MDCT and conventional X-ray. Reliability increased significantly when only the results of the staging performed by the two experienced observers were compared, particularly regarding the MDCT analysis. Our results also indicate that MDCT appears to be better suited to a detailed examination of the trabecular structure. In our opinion, MDCT is an adequate tool with which to examine the trabecular structure of long bones. However, adequate methods should be developed or existing methods should be adapted to MDCT.
Resumo:
Three case studies are presented to investigate the possibility of evaluating memory and cognitive capacities of severe intellectual disability with attention given to the ecological environment. Two 22-year-old male patients and a 27-year-old male patient, all three with severe intellectual disability with no verbal communication skills, were evaluated with a new and original paradigm adapted to study cognition in humans from experimental paradigms. We developed a test based on animal models to complement the "home" scale of the Adolescent and Adult Psychoeducational Profile (AAPEP), an assessment instrument designed for adolescents and adults with severe developmental disabilities. Results show that the new instrument is helpful, not only to staff members who can better understand the poor performances of their patients in daily life activities but also in the elaboration of individual acquisition plans. These preliminary results demonstrate the interest in developing a larger controlled study and in publishing our procedure.
Resumo:
Cancer is one of the world's leading causes of death with a rising trend in incidence. These epidemiologic observations underline the need for novel treatment strategies. In this regard, a promising approach takes advantage of the adaptive effector mechanisms of the immune system, using T lymphocytes to specifically target and destroy tumour cells. However, whereas current approaches mainly depend on short-lived, terminally differentiated effector T cells, increasing evidence suggests that long lasting and maximum efficient immune responses are mediated by low differentiated memory T cells. These memory T cells should display characteristics of stem cells, such as longevity, self-renewal capacity and the ability to continuously give rise to further differentiated effectors. These stem celllike memory T (TSCM) cells are thought to be of key therapeutic value as they might not only attack differentiated tumour cells, but also eradicate the root cause of cancer, the cancer stem cells themselves. Thus, efforts are made to characterize TSCM cells and to identify the signalling pathways which mediate their induction. Recently, a human TSCM cell subset was described and the activation of the Wnt-ß-catenin signalling pathway by the drug TWS119 during naive CD8+ T (TN) cell priming was suggested to mediate their induction. However, a precise deciphering of the signalling pathways leading to TSCM cell induction and an in-depth characterization of in vitro induced and in vivo occurring TSCM cells remain to be performed. Here, evidence is presented that the induction of human and mouse CD8+ and CD4+ TSCM cells may be triggered by inhibition of mechanistic/mammalian target of rapamycin (mTOR) complex 1 with simultaneously active mTOR complex 2. This molecular mechanism arrests a fraction of activated TN cells in a stem cell-like differentiation state independently of the Wnt-ß-catenin signalling pathway. Of note, TWS119 was found to also inhibit mTORCl, thereby mediating the induction of TSCM cells. Suggesting an immunostimulatory effect, the acquired data broaden the therapeutic range of mTORCl inhibitors like rapamycin, which are, at present, exclusively used due to their immunosuppressive function. Furthermore, by performing broad metabolic analyses, a well-orchestrated interplay between intracellular signalling pathways and the T cells' metabolic programmes could be identified as important regulator of the T cells' differentiation fate. Moreover, in vitro induced CD4+ TSCM cells possess superior functional capacities and share fate-determining key factors with their naturally occurring counterparts, assessed by a first-time full transcriptome analysis of in vivo occurring CD4+ TN cell, TSCM cells and central memory (TCM) cells and in vitro induced CD4+ TSCM cells. Of interest, a group of 56 genes, with a unique expression profile in TSCM cells could be identified. Thus, a pharmacological mechanism allowing to confer sternness to activated TN cells has been found which might be highly relevant for the design of novel T cell-based cancer immunotherapies.
Resumo:
Recent findings suggest that the visuo-spatial sketchpad (VSSP) may be divided into two sub-components processing dynamic or static visual information. This model may be useful to elucidate the confusion of data concerning the functioning of the VSSP in schizophrenia. The present study examined patients with schizophrenia and matched controls in a new working memory paradigm involving dynamic (the Ball Flight Task - BFT) or static (the Static Pattern Task - SPT) visual stimuli. In the BFT, the responses of the patients were apparently based on the retention of the last set of segments of the perceived trajectory, whereas control subjects relied on a more global strategy. We assume that the patients' performances are the result of a reduced capacity in chunking visual information since they relied mainly on the retention of the last set of segments. This assumption is confirmed by the poor performance of the patients in the static task (SPT), which requires a combination of stimulus components into object representations. We assume that the static/dynamic distinction may help us to understand the VSSP deficits in schizophrenia. This distinction also raises questions about the hypothesis that visuo-spatial working memory can simply be dissociated into visual and spatial sub-components.
Resumo:
Games are powerful and engaging. On average, one billion people spend at least 1 hour a day playing computer and videogames. This is even more true with the younger generations. Our students have become the < digital natives >, the < gamers >, the < virtual generation >. Research shows that those who are most at risk for failure in the traditional classroom setting, also spend more time than their counterparts, using video games. They might strive, given a different learning environment. Educators have the responsibility to align their teaching style to these younger generation learning styles. However, many academics resist the use of computer-assisted learning that has been "created elsewhere". This can be extrapolated to game-based teaching: even if educational games were more widely authored, their adoption would still be limited to the educators who feel a match between the authored games and their own beliefs and practices. Consequently, game-based teaching would be much more widespread if teachers could develop their own games, or at least customize them. Yet, the development and customization of teaching games are complex and costly. This research uses a design science methodology, leveraging gamification techniques, active and cooperative learning theories, as well as immersive sandbox 3D virtual worlds, to develop a method which allows management instructors to transform any off-the-shelf case study into an engaging collaborative gamified experience. This method is applied to marketing case studies, and uses the sandbox virtual world of Second Life. -- Les jeux sont puissants et motivants, En moyenne, un milliard de personnes passent au moins 1 heure par jour jouer à des jeux vidéo sur ordinateur. Ceci se vérifie encore plus avec les jeunes générations, Nos étudiants sont nés à l'ère du numérique, certains les appellent des < gamers >, d'autres la < génération virtuelle >. Les études montrent que les élèves qui se trouvent en échec scolaire dans les salles de classes traditionnelles, passent aussi plus de temps que leurs homologues à jouer à des jeux vidéo. lls pourraient potentiellement briller, si on leur proposait un autre environnement d'apprentissage. Les enseignants ont la responsabilité d'adapter leur style d'enseignement aux styles d'apprentissage de ces jeunes générations. Toutefois, de nombreux professeurs résistent lorsqu'il s'agit d'utiliser des contenus d'apprentissage assisté par ordinateur, développés par d'autres. Ceci peut être extrapolé à l'enseignement par les jeux : même si un plus grand nombre de jeux éducatifs était créé, leur adoption se limiterait tout de même aux éducateurs qui perçoivent une bonne adéquation entre ces jeux et leurs propres convictions et pratiques. Par conséquent, I'enseignement par les jeux serait bien plus répandu si les enseignants pouvaient développer leurs propres jeux, ou au moins les customiser. Mais le développement de jeux pédagogiques est complexe et coûteux. Cette recherche utilise une méthodologie Design Science pour développer, en s'appuyant sur des techniques de ludification, sur les théories de pédagogie active et d'apprentissage coopératif, ainsi que sur les mondes virtuels immersifs < bac à sable > en 3D, une méthode qui permet aux enseignants et formateurs de management, de transformer n'importe quelle étude de cas, provenant par exemple d'une centrale de cas, en une expérience ludique, collaborative et motivante. Cette méthode est appliquée aux études de cas Marketing dans le monde virtuel de Second Life.
Resumo:
THESIS ABSTRACTThis thesis project was aimed at studying the molecular mechanisms underlying learning and memory formation, in particular as they relate to the metabolic coupling between astrocytes and neurons. For that, changes in the metabolic activity of different mice brain regions after 1 or 9 days of training in an eight-arm radial maze were assessed by (14C) 2-deoxyglucose (2DG) autoradiography. Significant differences in the areas engaged during the behavioral task at day 1 (when animals are confronted for the first time to the learning task) and at day 9 (when animals are highly performing) have been identified. These areas include the hippocampus, the fornix, the parietal cortex, the laterodorsal thalamic nucleus and the mammillary bodies at day 1 ; and the anterior cingulate, the retrosplenial cortex and the dorsal striatum at day 9. Two of these cerebral regions (those presenting the greatest changes at day 1 and day 9: the hippocampus and the retrosplenial cortex, respectively) were microdissected by laser capture microscopy and selected genes related to neuron-glia metabolic coupling, glucose metabolism and synaptic plasticity were analyzed by RT-PCR. 2DG and gene expression analysis were performed at three different times: 1) immediately after the end of the behavioral paradigm, 2) 45 minutes and 3) 6 hours after training. The main goal of this study was the identification of the metabolic adaptations following the learning task. Gene expression results demonstrate that the learning task profoundly modulates the pattern of gene expression in time, meaning that these two cerebral regions with high 2DG signal (hippocampus and retrosplenial cortex) have adapted their metabolic molecular machinery in consequence. Almost all studied genes show a higher expression in the hippocampus at day 1 compared to day 9, while an increased expression was found in the retrosplenial cortex at day 9. We can observe these molecular adaptations with a short delay of 45 minutes after the end of the task. However, 6 hours after training a high gene expression was found at day 9 (compared to day 1) in both regions, suggesting that only one day of training is not sufficient to detect transcriptional modifications several hours after the task. Thus, gene expression data match 2DG results indicating a transfer of information in time (from day 1 to day 9) and in space (from the hippocampus to the retrosplenial cortex), and this at a cellular and a molecular level. Moreover, learning seems to modify the neuron-glia metabolic coupling, since several genes involved in this coupling are induced. These results also suggest a role of glia in neuronal plasticity.RESUME DU TRAVAIL DE THESECe projet de thèse a eu pour but l'étude des mécanismes moléculaires qui sont impliqués dans l'apprentissage et la mémoire et, en particulier, à les mettre en rapport avec le couplage métabolique existant entre les astrocytes et les neurones. Pour cela, des changements de l'activité métabolique dans différentes régions du cerveau des souris après 1 ou 9 jours d'entraînement dans un labyrinthe radial à huit-bras ont été évalués par autoradiographie au 2-désoxyglucose (2DG). Des différences significatives dans les régions engagées pendant la tâche comportementale au jour 1 (quand les animaux sont confrontés pour la première fois à la tâche) et au jour 9 (quand les animaux ont déjà appris) ont été identifiés. Ces régions incluent, au jour 1, l'hippocampe, le fornix, le cortex pariétal, le noyau thalamic laterodorsal et les corps mamillaires; et, au jour 9, le cingulaire antérieur, le cortex retrosplenial et le striatum dorsal. Deux de ces régions cérébrales (celles présentant les plus grands changements à jour 1 et à jour 9: l'hippocampe et le cortex retrosplenial, respectivement) ont été découpées par microdissection au laser et quelques gènes liés au couplage métabolique neurone-glie, au métabolisme du glucose et à la plasticité synaptique ont été analysées par RT-PCR. L'étude 2DG et l'analyse de l'expression de gènes ont été exécutés à trois temps différents: 1) juste après entraînement, 2) 45 minutes et 3) 6 heures après la fin de la tâche. L'objectif principal de cette étude était l'identification des adaptations métaboliques suivant la tâche d'apprentissage. Les résultats de l'expression de gènes démontrent que la tâche d'apprentissage module profondément le profile d'expression des gènes dans le temps, signifiant que ces deux régions cérébrales avec un signal 2DG élevé (l'hippocampe et le cortex retrosplenial) ont adapté leurs « machines moléculaires » en conséquence. Presque tous les gènes étudiés montrent une expression plus élevée dans l'hippocampe au jour 1 comparé au jour 9, alors qu'une expression accrue a été trouvée dans le cortex retrosplenial au jour 9. Nous pouvons observer ces adaptations moléculaires avec un retard court de 45 minutes après la fin de la tâche. Cependant, 6 heures après l'entraînement, une expression de gènes élevée a été trouvée au jour 9 (comparé à jour 1) dans les deux régions, suggérant que seulement un jour d'entraînement ne suffit pas pour détecter des modifications transcriptionelles plusieurs heures après la tâche. Ainsi, les données d'expression de gènes corroborent les résultats 2DG indiquant un transfert d'information dans le temps (de jour 1 à jour 9) et dans l'espace (de l'hippocampe au cortex retrosplenial), et ceci à un niveau cellulaire et moléculaire. D'ailleurs, la tâche d'apprentissage semble modifier le couplage métabolique neurone-glie, puisque de nombreux gènes impliqués dans ce couplage sont induits. Ces observations suggèrent un rôle important de la glie dans les mécanismes de plasticité du système nerveux.
Resumo:
During an infection the antigen-nonspecific memory CD8 T cell compartment is not simply an inert pool of cells, but becomes activated and cytotoxic. It is unknown how these cells contribute to the clearance of an infection. We measured the strength of T cell receptor (TCR) signals that bystander-activated, cytotoxic CD8 T cells (BA-CTLs) receive in vivo and found evidence of limited TCR signaling. Given this marginal contribution of the TCR, we asked how BA-CTLs identify infected target cells. We show that target cells express NKG2D ligands following bacterial infection and demonstrate that BA-CTLs directly eliminate these target cells in an innate-like, NKG2D-dependent manner. Selective inhibition of BA-CTL-mediated killing led to a significant defect in pathogen clearance. Together, these data suggest an innate role for memory CD8 T cells in the early immune response before the onset of a de novo generated, antigen-specific CD8 T cell response.
Resumo:
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.