159 resultados para Variance Models
Resumo:
PURPOSE: To evaluate and validate mRNA expression markers capable of identifying patients with ErbB2-positive breast cancer associated with distant metastasis and reduced survival. PATIENTS AND METHODS: Expression of 60 genes involved in breast cancer biology was assessed by quantitative real-time PCR (qrt-PCR) in 317 primary breast cancer patients and correlated with clinical outcome data. Results were validated subsequently using two previously published and publicly available microarray data sets with different patient populations comprising 295 and 286 breast cancer samples, respectively. RESULTS: Of the 60 genes measured by qrt-PCR, urokinase-type plasminogen activator (uPA or PLAU) mRNA expression was the most significant marker associated with distant metastasis-free survival (MFS) by univariate Cox analysis in patients with ErbB2-positive tumors and an independent factor in multivariate analysis. Subsequent validation in two microarray data sets confirmed the prognostic value of uPA in ErbB2-positive tumors by both univariate and multivariate analysis. uPA mRNA expression was not significantly associated with MFS in ErbB2-negative tumors. Kaplan-Meier analysis showed in all three study populations that patients with ErbB2-positive/uPA-positive tumors exhibited significantly reduced MFS (hazard ratios [HR], 4.3; 95% CI, 1.6 to 11.8; HR, 2.7; 95% CI, 1.2 to 6.2; and, HR, 2.8; 95% CI, 1.1 to 7.1; all P < .02) as compared with the group with ErbB2-positive/uPA-negative tumors who exhibited similar outcome to those with ErbB2-negative tumors, irrespective of uPA status. CONCLUSION: After evaluation of 898 breast cancer patients, uPA mRNA expression emerged as a powerful prognostic indicator in ErbB2-positive tumors. These results were consistent among three independent study populations assayed by different techniques, including qrt-PCR and two microarray platforms.
Resumo:
Over the last decade, the development of statistical models in support of forensic fingerprint identification has been the subject of increasing research attention, spurned on recently by commentators who claim that the scientific basis for fingerprint identification has not been adequately demonstrated. Such models are increasingly seen as useful tools in support of the fingerprint identification process within or in addition to the ACE-V framework. This paper provides a critical review of recent statistical models from both a practical and theoretical perspective. This includes analysis of models of two different methodologies: Probability of Random Correspondence (PRC) models that focus on calculating probabilities of the occurrence of fingerprint configurations for a given population, and Likelihood Ratio (LR) models which use analysis of corresponding features of fingerprints to derive a likelihood value representing the evidential weighting for a potential source.
Resumo:
PURPOSE: All kinds of blood manipulations aim to increase the total hemoglobin mass (tHb-mass). To establish tHb-mass as an effective screening parameter for detecting blood doping, the knowledge of its normal variation over time is necessary. The aim of the present study, therefore, was to determine the intraindividual variance of tHb-mass in elite athletes during a training year emphasizing off, training, and race seasons at sea level. METHODS: tHb-mass and hemoglobin concentration ([Hb]) were determined in 24 endurance athletes five times during a year and were compared with a control group (n = 6). An analysis of covariance was used to test the effects of training phases, age, gender, competition level, body mass, and training volume. Three error models, based on 1) a total percentage error of measurement, 2) the combination of a typical percentage error (TE) of analytical origin with an absolute SD of biological origin, and 3) between-subject and within-subject variance components as obtained by an analysis of variance, were tested. RESULTS: In addition to the expected influence of performance status, the main results were that the effects of training volume (P = 0.20) and training phases (P = 0.81) on tHb-mass were not significant. We found that within-subject variations mainly have an analytical origin (TE approximately 1.4%) and a very small SD (7.5 g) of biological origin. CONCLUSION: tHb-mass shows very low individual oscillations during a training year (<6%), and these oscillations are below the expected changes in tHb-mass due to Herythropoetin (EPO) application or blood infusion (approximately 10%). The high stability of tHb-mass over a period of 1 year suggests that it should be included in an athlete's biological passport and analyzed by recently developed probabilistic inference techniques that define subject-based reference ranges.
Using 3D surface datasets to understand landslide evolution: From analogue models to real case study
Resumo:
Early detection of landslide surface deformation with 3D remote sensing techniques, as TLS, has become a great challenge during last decade. To improve our understanding of landslide deformation, a series of analogue simulation have been carried out on non-rigid bodies coupled with 3D digitizer. All these experiments have been carried out under controlled conditions, as water level and slope angle inclination. We were able to follow 3D surface deformation suffered by complex landslide bodies from precursory deformation still larger failures. These experiments were the basis for the development of a new algorithm for the quantification of surface deformation using automatic tracking method on discrete points of the slope surface. To validate the algorithm, comparisons were made between manually obtained results and algorithm surface displacement results. Outputs will help in understanding 3D deformation during pre-failure stages and failure mechanisms, which are fundamental aspects for future implementation of 3D remote sensing techniques in early warning systems.
Resumo:
Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.
Resumo:
Cloud computing and its three facets (Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS)) are terms that denote new developments in the software industry. In particular, PaaS solutions, also referred to as cloud platforms, are changing the way software is being produced, distributed, consumed, and priced. Software vendors have started considering cloud platforms as a strategic option but are battling to redefine their offerings to embrace PaaS. In contrast to SaaS and IaaS, PaaS allows for value co-creation with partners to develop complementary components and applications. It thus requires multisided business models that bring together two or more distinct customer segments. Understanding how to design PaaS business models to establish a flourishing ecosystem is crucial for software vendors. This doctoral thesis aims to address this issue in three interrelated research parts. First, based on case study research, the thesis provides a deeper understanding of current PaaS business models and their evolution. Second, it analyses and simulates consumers' preferences regarding PaaS business models, using a conjoint approach to find out what determines the choice of cloud platforms. Finally, building on the previous research outcomes, the third part introduces a design theory for the emerging class of PaaS business models, which is grounded on an extensive action design research study with a large European software vendor. Understanding PaaS business models from a market as well as a consumer perspective will, together with the design theory, inform and guide decision makers in their business model innovation plans. It also closes gaps in the research related to PaaS business model design and more generally related to platform business models.
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
OBJECTIVE: Gaining postpyloric access in ventilated, sedated ICU patients usually requires time-consuming procedures such as endoscopy. Recently, a feeding tube has been introduced that migrates spontaneously into the jejunum in surgical patients. The study aimed at assessing the rate of migration of this tube in critically ill patients. DESIGN: Prospective descriptive trial. SETTING: Surgical ICU in a tertiary University Hospital. PATIENTS: One hundred and five consecutive surgical ICU patients requiring enteral feeding were enrolled, resulting in 128 feeding-tube placement attempts. METHODS: A self-propelled tube was used and followed up for 3 days: progression was assessed by daily contrast-injected X-ray. Severity of illness was assessed with SAPS II and organ failure assessed with SOFA score. RESULTS: The patients were aged 55+/-19 years (mean+/-SD) with SAPS II score of 45+/-18. Of the 128 tube placement attempts, 12 could not be placed in the stomach; eight were accidentally pulled out while in gastric position due to the necessity to avoid fixation during the progression phase. Among organ failures, respiratory failure predominated, followed by cardiovascular. By day 3, the postpyloric progression rate was 63/128 tubes (49%). There was no association between migration and age, or SAPS II score, but the progression rate was significantly poorer in patients with hemodynamic failure. Use of norepinephrine and morphine were negatively associated with tube progression (P<0.001), while abdominal surgery was not. In ten patients, jejunal tubes were placed by endoscopy. CONCLUSION: Self-propelled feeding tubes progressed from the stomach to the postpyloric position in 49% of patients, reducing the number of endoscopic placements: these tubes may facilitate enteral nutrient delivery in the ICU.
Resumo:
Functional divergence between homologous proteins is expected to affect amino acid sequences in two main ways, which can be considered as proxies of biochemical divergence: a "covarion-like" pattern of correlated changes in evolutionary rates, and switches in conserved residues ("conserved but different"). Although these patterns have been used in case studies, a large-scale analysis is needed to estimate their frequency and distribution. We use a phylogenomic framework of animal genes to answer three questions: 1) What is the prevalence of such patterns? 2) Can we link such patterns at the amino acid level with selection inferred at the codon level? 3) Are patterns different between paralogs and orthologs? We find that covarion-like patterns are more frequently detected than "constant but different," but that only the latter are correlated with signal for positive selection. Finally, there is no obvious difference in patterns between orthologs and paralogs.
Resumo:
Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees and independent investigators that evaluate methods for global gene expression analysis.
Resumo:
We examined drivers of article citations using 776 articles that were published from 1990-2012 in a broad-based and high-impact social sciences journal, The Leadership Quarterly. These articles had 1,191 unique authors having published and received in total (at the time of their most recent article published in our dataset) 16,817 articles and 284,777 citations, respectively. Our models explained 66.6% of the variance in citations and showed that quantitative, review, method, and theory articles were significantly more cited than were qualitative articles or agent-based simulations. As concerns quantitative articles, which constituted the majority of the sample, our model explained 80.3% of the variance in citations; some methods (e.g., use of SEM) and designs (e.g., meta-analysis), as well as theoretical approaches (e.g., use of transformational, charismatic, or visionary type-leadership theories) predicted higher article citations. Regarding the statistical conclusion validity of quantitative articles, articles having endogeneity threats received significantly fewer citations than did those using a more robust design or an estimation procedure that ensured correct causal estimation. We make several general recommendations on how to improve research practice and article citations.
Resumo:
The objective of the EU funded integrated project "ACuteTox" is to develop a strategy in which general cytotoxicity, together with organ-specific endpoints and biokinetic features, are taken into consideration in the in vitro prediction of oral acute systemic toxicity. With regard to the nervous system, the effects of 23 reference chemicals were tested with approximately 50 endpoints, using a neuronal cell line, primary neuronal cell cultures, brain slices and aggregated brain cell cultures. Comparison of the in vitro neurotoxicity data with general cytotoxicity data generated in a non-neuronal cell line and with in vivo data such as acute human lethal blood concentration, revealed that GABA(A) receptor function, acetylcholine esterase activity, cell membrane potential, glucose uptake, total RNA expression and altered gene expression of NF-H, GFAP, MBP, HSP32 and caspase-3 were the best endpoints to use for further testing with 36 additional chemicals. The results of the second analysis showed that no single neuronal endpoint could give a perfect improvement in the in vitro-in vivo correlation, indicating that several specific endpoints need to be analysed and combined with biokinetic data to obtain the best correlation with in vivo acute toxicity.