93 resultados para TCTL (timed computation tree logic)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing in wild populations how fitness is impacted by inbreeding and genetic drift is a major goal for conservation biology. An approach to measure the detrimental effects of inbreeding on fitness is to estimate correlations between molecular variation and phenotypic performances within and among populations. Our study investigated the effect of individual multilocus heterozygosity on body size, body condition and reproductive investment of males (that is, chorus attendance) and females (that is, clutch mass and egg size) in both small fragmented and large non-fragmented populations of European tree frog (Hyla arborea). Because adult size and/or condition and reproductive investment are usually related, genetic erosion may have detrimental effects directly on reproductive investment, and also on individual body size and condition that in turn may affect reproductive investment. We confirmed that the reproductive investment was highly size-dependent for both sexes. Larger females invested more in offspring production, and larger males attended the chorus in the pond more often. Our results did not provide evidence for a decline in body size, condition and reproductive effort with decreased multilocus heterozygosity both within and among populations. We showed that the lack of heterozygosity-fitness correlations within populations probably resulted from low inbreeding levels (inferior to ca. 20% full-sib mating rate), even in the small fragmented populations. The detrimental effects of fixation load were either low in adults or hidden by environmental variation among populations. These findings will be useful to design specific management actions to improve population persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black cherry (Prunus serotina) is a tree from North America, where it is often used for economical purposes, whereas it is widespread and invasive in Europe. Plastid DNA variation was Wrst investigated in both its native and invasive ranges using microsatellite loci and sequences of three intergenic spacers (trnT-trnL, trnD-trnT and trnS-trnG). This analysis was focused on P. serotina var. serotina, with the inclusion of samples of closely related taxa. Length variation at a microsatellite locus (ccmp5) and a few sequence polymorphisms were identi- Wed among P. serotina samples. Four new primer pairs were then designed to speciWcally amplify variable regions and a combination of Wve markers was Wnally proposed for phylogeographic studies in P. serotina. These loci allow identiWcation of six chlorotypes in P. serotina var. serotina, which may be particularly useful to depict the maternal origins of European invasive populations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexual reproduction is nearly universal in eukaryotes and genetic determination of sex prevails among animals. The astonishing diversity of sex-determining systems and sex chromosomes is yet bewildering. Some taxonomic groups possess conserved and dimorphic sex chromosomes, involving a functional copy (e.g. mammals' X, birds' Z) and a degenerated copy (mammals' Y, birds' W), implying that sex- chromosomes are expected to decay. In contrast, others like amphibians, reptiles and fishes yet maintained undifferentiated sex chromosomes. Why such different evolutionary trajectories? In this thesis, we empirically test and characterize the main hypotheses proposed to prevent the genetic decay of sex chromosomes, namely occasional X-Y recombination and frequent sex-chromosome transitions, using the Palearctic radiation of Hyla tree frogs as a model system. We take a phylogeographic and phylogenetic approach to relate sex-chromosome recombination, differentiation, and transitions in a spatial and temporal framework. By reconstructing the recent evolutionary history of the widespread European tree frog H. arborea, we showed that sex chromosomes can recombine in males, preventing their differentiation, a situation that potentially evolves rapidly. At the scale of the entire radiation, X-Y recombination combines with frequent transitions to prevent sex-chromosome degeneration in Hyla: we traced several turnovers of sex-determining system within the last 10My. These rapid changes seem less random than usually assumed: we gathered evidences that one chromosome pair is a sex expert, carrying genes with key role in animal sex determination, and which probably specialized through frequent reuse as a sex chromosome in Hyla and other amphibians. Finally, we took advantage of secondary contact zones between closely-related Hyla lineages to evaluate the consequences of sex chromosome homomorphy on the genetics of speciation. In comparison with other systems, the evolution of sex chromosomes in Hyla emphasized the existence of consistent evolutionary patterns within the chaotic diversity of flexibility of cold-blooded vertebrates' sex-determining systems, and provides insights into the evolution of recombination. Beyond sex-chromosome evolution, this work also significantly contributed to speciation, phylogeography and applied conservation research. -- La reproduction sexuée est quasi-universelle chez les eucaryotes et le sexe est le plus souvent déterminé génétiquement au sein du règne animal. L'incroyable diversité des systèmes de reproduction et des chromosomes sexuels est particulièrement étonnante. Certains groupes taxonomiques possèdent des chromosomes sexuels dimorphiques et très conservés, avec une copie entièrement fonctionnelle (ex : le X des mammifères, le Z des oiseaux) et une copie dégénérée (ex : le Y des mammifères, le W des oiseaux), suggérant que les chromosomes sexuels sont voués à se détériorer. Cependant les chromosomes sexuels d'autres groupes tels que les amphibiens, les reptiles et les poissons sont pour la plupart indifférenciés. Comment expliquer des trajectoires évolutives si différentes? Au cours de cette thèse, nous avons étudié empiriquement les processus évolutifs pouvant maintenir les chromosomes sexuels intacts, à savoir la recombinaison X-Y occasionnel ainsi que les substitutions fréquentes de chromosomes sexuels, en utilisant les rainettes Paléarctiques du genre Hyla comme modèle d'étude. Nous avons adopté une approche phylogéographique et phylogénétique pour appréhender les événements de recombinaison, de différenciation et de transitions de chromosomes sexuels dans un contexte spatio-temporel. En retraçant l'histoire évolutive récente de la rainette verte H. arborea, nous avons mis en évidence que les chromosomes sexuels pouvaient recombiner chez les mâles, empêchant ainsi leur différenciation, et que ce processus avait le potentiel d'évoluer très rapidement. A l'échelle plus globale de la radiation, il apparait que les phénomènes de recombinaison X-Y soient également accompagnés de substitutions de chromosomes sexuels, et participent de concert au maintien de chromosomes sexuels intacts dans les populations: le système de détermination du sexe des rainettes a changé plusieurs fois au cours des 10 derniers millions d'années. Ces transitions fréquentes ne semblent pas aléatoires: nous avons identifié une paire de chromosomes qui présente des caractéristiques présageant d'une spécialisation dans le déterminisme du sexe (notamment car elle possède des gènes importants pour cette fonction), et qui a été réutilisée plusieurs fois comme tel chez les rainettes ainsi que d'autres amphibiens. Enfin, nous avons étudié l'hybridation entre différentes espèces dans leurs zones de contact, afin d'évaluer si l'absence de différenciation entre X et Y jouaient un rôle dans les processus génétiques de spéciation. Outre son intérêt pour la compréhension de l'évolution des chromosomes sexuels, ce travail contribue de manière significative à d'autres domaines de recherche tels que la spéciation, la phylogéographie, ainsi que la biologie de la conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to natural selection, domestication implies a dramatic change in traits linked to fitness. A number of traits conferring fitness in the wild might be detrimental under domestication, and domesticated species typically differ from their ancestors in a set of traits known as the domestication syndrome. Specifically, trade-offs between growth and reproduction are well established across the tree of life. According to allocation theory, selection for growth rate is expected to indirectly alter life-history reproductive traits, diverting resources from reproduction to growth. Here we tested this hypothesis by examining the genetic change and correlated responses of reproductive traits as a result of selection for timber yield in the tree Pinus pinaster. Phenotypic selection was carried out in a natural population, and progenies from selected trees were compared with those of control trees in a common garden experiment. According to expectations, we detected a genetic change in important life-history traits due to selection. Specifically, threshold sizes for reproduction were much higher and reproductive investment relative to size significantly lower in the selected progenies just after a single artificial selection event. Our study helps to define the domestication syndrome in exploited forest trees and shows that changes affecting developmental pathways are relevant in domestication processes of long-lived plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of competition for light among plants has long been recognized at local scales, but its potential importance for plant species' distribution at larger spatial scales has largely been ignored. Tree cover acts as a modulator of local abiotic conditions, notably by reducing light availability below the canopy and thus the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains. Using 6,935 vegetation plots located across the European Alps, we fit Generalized Linear Models (GLM) for the distribution of 960 herbs and shrubs species to assess the effect of tree cover at both plot and landscape grain sizes (~ 10-m and 1-km, respectively). We ran four models with different combinations of variables (climate, soil and tree cover) for each species at both spatial grains. We used partial regressions to evaluate the independent effects of plot- and landscape-scale tree cover on plant communities. Finally, the effects on species' elevational range limits were assessed by simulating a removal experiment comparing the species' distribution under high and low tree cover. Accounting for tree cover improved model performance, with shade-tolerant species increasing their probability of presence at high tree cover whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both plot and landscape spatial grains, albeit strongest at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-scale plant communities, suggesting that the effects may be transmitted to coarser grains through meta-community dynamics. At high tree cover, shade-intolerant species exhibited elevational range contractions, especially at their upper limit, whereas shade-tolerant species showed elevational range expansions at both limits. Our findings suggest that the range shifts for herb and shrub species may be modulated by tree cover dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. RESULTS: We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. CONCLUSIONS: Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrasting with birds and mammals, poikilothermic vertebrates often have homomorphic sex chromosomes, possibly resulting from high rates of sex-chromosome turnovers and/or occasional X-Y recombination. Strong support for the latter mechanism was provided by four species of European tree frogs, which inherited from a common ancestor (∼5 Ma) the same pair of homomorphic sex chromosomes (linkage group 1, LG1), harboring the candidate sex-determining gene Dmrt1. Here, we test sex linkage of LG1 across six additional species of the Eurasian Hyla radiation with divergence times ranging from 6 to 40 Ma. LG1 turns out to be sex linked in six of nine resolved cases. Mapping the patterns of sex linkage to the Hyla phylogeny reveals several transitions in sex-determination systems within the last 10 My, including one switch in heterogamety. Phylogenetic trees of DNA sequences along LG1 are consistent with occasional X-Y recombination in all species where LG1 is sex linked. These patterns argue against one of the main potential causes for turnovers, namely the accumulation of deleterious mutations on nonrecombining chromosomes. Sibship analyses show that LG1 recombination is strongly reduced in males from most species investigated, including some in which it is autosomal. Intrinsically low male recombination might facilitate the evolution of male heterogamety, and the presence of important genes from the sex-determination cascade might predispose LG1 to become a sex chromosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybridization by introduced taxa is a major threat to native species. Characterizing human introductions is thus one of the missions of conservation geneticists. Here we survey a declining population of the regionally endangered European tree frog (Hyla arborea) in the Grangettes natural reserve (Rhone valley, Western Switzerland), where previous evidence indicated human introduction of the Italian taxon H. intermedia. We combined fast-evolving mitochondrial and nuclear markers and an extended sampling to conduct population genetic analyses of the Grangettes and putative source areas. We show that the Grangettes population is a hybrid swarm, with all individuals featuring recent nuclear admixture and mitochondrial DNA of introduced H. intermedia, most likely of proximate south Alpine origin. In contrast, H. arborea and H. intermedia hardly introgress in their natural parapatric ranges, consistent with an advanced reproductive isolation. Thus, potential hybrid incompatibilities may account for the strong decline of this population, despite important conservation efforts. Although their hybrid nature makes them a priori unworthy of any protection, we propose specific measures to recover local H. arborea gene pool and preserve tree frogs in the Grangettes, the last population remaining from this heavily impacted part of the Alps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Available methods to simulate nucleotide or amino acid data typically use Markov models to simulate each position independently. These approaches are not appropriate to assess the performance of combinatorial and probabilistic methods that look for coevolving positions in nucleotide or amino acid sequences. RESULTS: We have developed a web-based platform that gives a user-friendly access to two phylogenetic-based methods implementing the Coev model: the evaluation of coevolving scores and the simulation of coevolving positions. We have also extended the capabilities of the Coev model to allow for the generalization of the alphabet used in the Markov model, which can now analyse both nucleotide and amino acid data sets. The simulation of coevolving positions is novel and builds upon the developments of the Coev model. It allows user to simulate pairs of dependent nucleotide or amino acid positions. CONCLUSIONS: The main focus of our paper is the new simulation method we present for coevolving positions. The implementation of this method is embedded within the web platform Coev-web that is freely accessible at http://coev.vital-it.ch/, and was tested in most modern web browsers.