111 resultados para Signal interference


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin morphogenesis, maintenance, and healing after wounding require complex epithelial-mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARbeta/delta stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARbeta/delta regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARbeta/delta regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARbeta/delta, other epithelial-mesenchymal interactions may also be regulated in a similar manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Inhibitory control refers to our ability to suppress ongoing motor, affective or cognitive processes and mostly depends on a fronto-basal brain network. Inhibitory control deficits participate in the emergence of several prominent psychiatric conditions, including attention deficit/hyperactivity disorder or addiction. The rehabilitation of these pathologies might therefore benefit from training-based behavioral interventions aiming at improving inhibitory control proficiency and normalizing the underlying neurophysiological mechanisms. The development of an efficient inhibitory control training regimen first requires determining the effects of practicing inhibition tasks. METHODS: We addressed this question by contrasting behavioral performance and electrical neuroimaging analyses of event-related potentials (ERPs) recorded from humans at the beginning versus the end of 1 h of practice on a stop-signal task (SST) involving the withholding of responses when a stop signal was presented during a speeded auditory discrimination task. RESULTS: Practicing a short SST improved behavioral performance. Electrophysiologically, ERPs differed topographically at 200 msec post-stimulus onset, indicative of the engagement of distinct brain network with learning. Source estimations localized this effect within the inferior frontal gyrus, the pre-supplementary motor area and the basal ganglia. CONCLUSION: Our collective results indicate that behavioral and brain responses during an inhibitory control task are subject to fast plastic changes and provide evidence that high-order fronto-basal executive networks can be modified by practicing a SST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developmentally regulated mechanisms involving alternative RNA splicing and/or polyadenylation, as well as transcription termination, are implicated in controlling the levels of secreted mu (mu s), membrane mu (mu m) and delta immunoglobulin (Ig) heavy chain mRNAs during B cell differentiation (mu gene encodes the mu heavy chain). Using expression vectors constructed with genomic DNA segments composed of the mu m polyadenylation signal region, we analyzed poly(A) site utilization and termination of transcription in stably transfected myeloma cells and in murine fibroblast L cells. We found that the gene segment containing the mu m poly(A) signals, along with 536 bp of downstream flanking sequence, acted as a transcription terminator in both myeloma cells and L cell fibroblasts. Neither a 141-bp DNA fragment (which directed efficient polyadenylation at the mu m site), nor the 536-bp flanking nucleotide sequence alone, were sufficient to obtain a similar regulation. This shows that the mu m poly(A) region plays a central role in controlling developmentally regulated transcription termination by blocking downstream delta gene expression. Because this gene segment exhibited the same RNA processing and termination activities in fibroblasts, it appears that these processes are not tissue-specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hypothesis for the maintenance of genetic variation states that alternative genotypes are adapted to different environmental conditions (i.e., genotype-by-environment interaction GxE) that vary in space and time. Although GxE has been demonstrated for morphological traits, little evidence has been given whether these GxE are associated with traits used as signal in mate choice. In three wild bird species, we investigated whether the degree of melanin-based coloration, a heritable trait, covaries with nestling growth rate in rich and poor environments. Variation in the degree of reddish-brown phaeomelanism is pronounced in the barn owl (Tyto alba) and tawny owl (Strix aluco), and variation in black eumelanism in the barn owl and Alpine swift (Apus melba). Melanin-based coloration has been shown to be a criterion in mate choice in the barn owl. We cross-fostered hatchlings to test whether nestlings sired by parents displaying melanin-based colorations to different extent exhibit alternative growth trajectories when raised by foster parents in poor (experimentally enlarged broods) and rich (experimentally reduced broods) environments. With respect to phaeomelanism, barn owl and tawny owl offspring sired by redder parents grew more rapidly in body mass only in experimentally reduced broods. With respect to eumelanism, Alpine swift offspring of darker fathers grew their wings more rapidly only in experimentally enlarged broods, a difference that was not detected in reduced broods. These interactions between parental melanism and offspring growth rate indicate that individuals display substantial plasticity in response to the rearing environment which is associated with the degree of melanism: at least with respect to nestling growth, phaeomelanic and eumelanic individuals are best adapted to rich and poor environments, respectively. It now remains to be investigated why eumelanism and phaeomelanism have a different signaling function and what the lifelong consequences of these melanism-dependent allocation strategies are. This is important to fully appraise the role played by environmental heterogeneity in maintaining variation in the degree of melanin-based coloration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPKs), including p38 and c-Jun N-terminal kinase (JNK), have a key role in T cell receptor (TCR)-induced gene transcription but their precise mechanism of activation is not well understood. The findings of two recent papers provide new insight into the activation of p38 and JNK by the membrane-associated guanylate kinase (MAGUK) family members Dlgh1 and Carma1, respectively, and show how distinct MAGUK proteins control specific aspects of TCR-mediated MAPK activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F(1) subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital nephrogenic diabetes insipidus (CNDI) is a rare disease characterized by the inability of the kidney to respond to arginine vasopressin (AVP). The absence of the neurohypophyseal 'bright signal' on T1 sequence magnetic resonance imaging (MRI) is considered as an argument in favour of the diagnosis of central diabetes insipidus (CDI). This observation is challenged as we hereby present a case of a child diagnosed with CNDI and who did not present MRI pituitary bright signal. A 6-month-old male presented with failure to thrive, polyuria and polydypsia. Family history revealed that the mother, 35 years of age, had been presenting polydypsia and polyuria, and she was investigated at the age of 6 years with no concluding diagnosis. The patient's physical exam showed a weight of 5215 g (−3 DS) and clinical signs of dehydration. The patient's plasma sodium level was 155 mmol/L, osmolality 305 mOsm/kg and urine osmolality 150 mOsm/kg. Brain MRI showed in T1 sequences the absence of the posterior pituitary bright signal suggesting the diagnosis of CDI (Figure 1). The child was treated with synthetic AVP analogue 1-desamino-8-d-arginine vasopressin (DDAVP) without improvement, which led to the consideration of CNDI. The diagnosis was confirmed by an elevated serum level of AVP of 214 pmol/L (reference value ≤4.34 pmol/L) and by genetic analysis demonstrating and T106C mutation in the V2R (X-linked CNDI). The child was treated with thiazide diuretic and increased fluids with restricted sodium intake. This resulted in catch-up growth and improved neurological development. A follow-up MRI was performed 6 months after the start of therapy with the same technique. At that time, the child's weight had improved to 9310 g (−1.5 DS) corresponding to a gain of 22 g per day, and he did not present any clinical signs of dehydration and had a normal plasma level of sodium (140 mmol/L). MRI showed that the bright signal was still absent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The diagnosis of pheochromocytoma relies on the measurement of plasma free metanephrines assay whose reliability has been considerably improved by ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Here we report an analytical interference occurring between 4-hydroxy-3-methoxymethamphetamine (HMMA), a metabolite of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), and normetanephrine (NMN) since they share a common pharmacophore resulting in the same product ion after fragmentation. DESIGN AND METHODS: Synthetic HMMA was spiked into plasma samples containing various concentrations of NMN and the intensity of the interference was determined by UPLC-MS/MS before and after improvement of the analytical method. RESULTS: Using a careful adjustment of chromatographic conditions including the change of the UPLC analytical column, we were able to distinguish both compounds. HMMA interference for NMN determination should be seriously considered since MDMA activates the sympathetic nervous system and if confounded with NMN may lead to false-positive tests when performing a differential diagnostic of pheochromocytoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jasmonic acid and its precursors are potent regulatory molecules in plants. We devised a method for the simultaneous extraction of these compounds from plant leaves to quantitate changes in the levels of jasmonate family members during health and on wounding. During our study, we identified a novel 16-carbon cyclopentenoic acid in leaf extracts from Arabidopsis and potato. The new compound, a member of the jasmonate family of signals, was named dinor-oxo-phytodienoic acid. Dinor-oxo-phytodienoic acid was not detected in the Arabidopsis mutant fad5, which is incapable of synthesizing 7Z,10Z, 13Z-hexadecatrienoic acid (16:3), suggesting that the metabolite is derived directly from plastid 16:3 rather than by beta-oxidation of the 18-carbon 12-oxo-phytodienoic acid. Simultaneous quantitation of jasmonate family members in healthy leaves of Arabidopsis and potato suggest that different plant species have different relative levels of jasmonic acid, oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. We term these profiles "oxylipin signatures." Dinor-oxo-phytodienoic acid levels increased dramatically in Arabidopsis and potato leaves on wounding, suggesting roles in wound signaling. Treatment of Arabidopsis with micromolar levels of dinor-oxo-phytodienoic acid increased the ability of leaf extracts to transform linoleic acid into the alpha-ketol 13-hydroxy-12-oxo-9(Z) octadecenoic acid indicating that the compound can regulate part of its own biosynthetic pathway. Tightly regulated changes in the relative levels of biologically active jasmonates may permit sensitive control over metabolic, developmental, and defensive processes in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents. METHODOLOGY/PRINCIPAL FINDINGS: We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1beta. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K(+) efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. SIGNIFICANCE/CONCLUSIONS: The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that potentiates glucose-induced insulin secretion by pancreatic beta cells. The mechanisms of interaction between GLP-1 and glucose signaling pathways are not well understood. Here we studied the coupling of the cloned GLP-1 receptor, expressed in fibroblasts or in COS cells, to intracellular second messengers and compared this signaling with that of the endogenous receptor expressed in insulinoma cell lines. Binding of GLP-1 to the cloned receptor stimulated formation of cAMP with the same dose dependence and similar kinetics, compared with the endogenous receptor of insulinoma cells. Compared with forskolin-induced cAMP accumulation, that induced by GLP-1 proceeded with the same initial kinetics but rapidly reached a plateau, suggesting fast desensitization of the receptor. Coupling to the phospholipase C pathway was assessed by measuring inositol phosphate production and variations in the intracellular calcium concentration. No GLP-1-induced production of inositol phosphates could be measured in the different cell types studied. A rise in the intracellular calcium concentration was nevertheless observed in transfected COS cells but was much smaller than that observed in response to norepinephrine in cells also expressing the alpha 1B-adrenergic receptor. Importantly, no such increase in the intracellular calcium concentration could be observed in transfected fibroblasts or insulinoma cells, which, however, responded well to thrombin or carbachol, respectively. Together, our data show that interaction between GLP-1 and glucose signaling pathways in beta cells may be mediated uniquely by an increase in the intracellular cAMP concentration, with the consequent activation of protein kinase A and phosphorylation of elements of the glucose-sensing apparatus or of the insulin granule exocytic machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease.