299 resultados para Sexual Differentiation
Resumo:
Transcription factors of the NF-kappaB/Rel family are important mediators of extracellular signals. Their implication in positive selection of thymocytes is suggested by a defective thymic development in transgenic mice that over-express IkappaB in thymocytes. These mice exhibit an accumulation of an unusually prominent population of TCRhigh/CD4/CD8 double positive cells in the thymus and a dramatic reduction of CD4+ and CD8+ cells in the periphery. The present study addresses the role of NF-kappaB in survival and differentiation processes of maturing thymocytes using IkappaB/bcl-2 and IkappaB/HY double-transgenic mice. Neither the introduction of the anti-apoptosis gene bcl-2 nor the positively selecting background in female HY transgenic mice resulted in a rescue of the maturational defects observed in the thymus of IkappaB transgenic mice. Thus, rather than promoting survival the main role of NF-kappaB/Rel proteins during positive selection of thymocytes appears to be the mediation of differentiation signals.
Resumo:
Rho GTPases integrate control of cell structure and adhesion with downstream signaling events. In keratinocytes, RhoA is activated at early times of differentiation and plays an essential function in establishment of cell-cell adhesion. We report here that, surprisingly, Rho signaling suppresses downstream gene expression events associated with differentiation. Similar inhibitory effects are exerted by a specific Rho effector, CRIK (Citron kinase), which is selectively down-modulated with differentiation, thereby allowing the normal process to occur. The suppressing function of Rho/CRIK on differentiation is associated with induction of KyoT1/2, a LIM domain protein gene implicated in integrin-mediated processes and/or Notch signaling. Like activated Rho and CRIK, elevated KyoT1/2 expression suppresses differentiation. Thus, Rho signaling exerts an unexpectedly complex role in keratinocyte differentiation, which is coupled with induction of KyoT1/2, a LIM domain protein gene with a potentially important role in control of cell self renewal.
Resumo:
Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.
Resumo:
Two candidate genes for controlling thymocyte differentiation, T-cell factor-1 (Tcf-1) and lymphoid enhancer-binding factor (Lef-1), encode closely related DNA-binding HMG-box proteins. Their expression pattern is complex and largely overlapping during embryogenesis, yet restricted to lymphocytes postnatally. Here we generate two independent germline mutations in Tcf-1 and find that thymocyte development in (otherwise normal) mutant mice is blocked at the transition from the CD8+, immature single-positive to the CD4+/CD8+ double-positive stage. In contrast to wild-type mice, most of the immature single-positive cells in the mutants are not in the cell cycle and the number of immunocompetent T cells in peripheral lymphoid organs is reduced. We conclude that Tcf-1 controls an essential step in thymocyte differentiation.
Resumo:
BACKGROUND: Years since onset of sexual intercourse (YSSI) is a rarely used variable when studying adolescents- sexual outcomes. The aim of this study is to evaluate the influence of YSSI on the adverse sexual outcomes of early sexual initiators.METHODS: Data were drawn from the 2002 Swiss Multicenter Adolescent Survey on Health database, a nationally representative cross-sectional survey including 7429 adolescents in post mandatory school aged 16-20 years. Only adolescents reporting sexual intercourse (SI) were included (N=4388; 45% females) and divided by age of onset of SI (early initiators, age<16: N=1469, 44% females; and late initiators, age?16: N=2919, 46% females). Analyses were done separately by gender. Groups were compared for personal characteristics at the bivariate level. We analyzed three sexual outcomes (?4 sexual partners, pregnancy and non-use of condom at last SI) controlling for all significant personal variables with two logistic regressions first using age, then YSSI as one of the confounding variables. Results are given as adjusted odds ratios (aOR) using lSI as the reference category.RESULTS: After adjusting for YSSI instead of age, negative sexual outcomes among early initiators were no longer significant, except for multiple sexual partners among females, although at a much lower level. Early initiators were less likely to report non-use of condom at last SI when adjusting for YSSI (females: aOR=0.59 [0.44-0.79]; p<0.001; males aOR=0.71 [0.50-1.00]; p=0.053).CONCLUSION: YSSI is an important explanatory variable when studying adolescents- sexuality and needs to be included in future research on adolescents- sexual health.
Resumo:
Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.
Resumo:
Understanding how new phenotypes evolve is challenging because intermediate stages in transitions from ancestral to derived phenotypes often remain elusive. Here we describe and evaluate a new mechanism facilitating the transition from sexual reproduction to parthenogenesis. In many sexually reproducing species, a small proportion of unfertilized eggs can hatch spontaneously ('tychoparthenogenesis') and develop into females. Using an analytical model, we show that if females are mate-limited, tychoparthenogenesis can result in the loss of males through a positive feedback mechanism whereby tychoparthenogenesis generates female-biased sex ratios and increasing mate limitation. As a result, the strength of selection for tychoparthenogenesis increases in concert with the proportion of tychoparthenogenetic offspring in the sexual population. We then tested the hypothesis that mate limitation selects for tychoparthenogenesis and generates female-biased sex ratios, using data from natural populations of sexually reproducing Timema stick insects. Across 41 populations, both the tychoparthenogenesis rates and the proportions of females increased exponentially as the density of individuals decreased, consistent with the idea that low densities of individuals result in mate limitation and selection for reproductive insurance through tychoparthenogenesis. Our model and data from Timema populations provide evidence for a simple mechanism through which parthenogenesis can evolve rapidly in a sexual population.
Resumo:
The expression of DNA topoisomerase II alpha and beta genes was studied in murine normal tissues. Northern blot analysis using probes specific for the two genes showed that the patterns of expression were different among 22 tissues of adult mice. Expression levels of topoisomerase II alpha gene were high in proliferating tissues, such as bone marrow and spleen, and undetectable or low in 17 other tissues. In contrast, high or intermediate expression of topoisomerase II beta gene was found in a variety of tissues (15) of adult mice, including those with no proliferating cells. Topoisomerase II gene expression was also studied during murine development. In whole embryos both genes were expressed at higher levels in early than late stages of embryogenesis. Heart, brain and liver of embryos two days before delivery, and these same tissues plus lung and thymus of newborn (1-day-old) mice expressed appreciable levels of the two genes. Interestingly, a post-natal induction of the beta gene expression was observed in the brain but not in the liver; conversely, the expression of the alpha gene was increased 1 day after birth in the liver but not in the brain. However, gene expression of a proliferation-associated enzyme, thymidylate synthase, was similar in these tissues between embryos and newborns. Thus, the two genes were differentially regulated in the post-natal period, and a tissue-specific role may be suggested for the two isoenzymes in the development of differentiated tissues such as the brain and liver. Based on the differential patterns of expression of the two isoforms, this analysis indicates that topoisomerase II alpha may be a specific marker of cell proliferation, whereas topoisomerase II beta may be implicated in functions of DNA metabolism other than replication.
Resumo:
According to the World Health Organization, 5.1% of blindnesses or visual impairments are related to corneal opacification. Cornea is a transparent tissue placed in front of the color of the eye. Its transparency is mandatory for vision. The ocular surface is a functional unit including the cornea and all the elements involved in maintaining its transparency i.e., the eyelids, the conjunctiva, the lymphoid tissue of the conjunctiva, the limbus, the lacrymal glands and the tear film. The destruction of the ocular surface is a disease caused by : traumatisms, infections, chronic inflammations, cancers, toxics, unknown causes or congenital abnormalities. The treatment of the ocular surface destruction requires a global strategy including all the elements that are involved in its physiology. The microenvironnement of the ocular surface must first be restored, i.e., the lids, the conjunctiva, the limbus and the structures that secrete the different layers of the tear film. In a second step, the transparency of the cornea can be reconstructed. A corneal graft performed in a healthy ocular surface microenvironnement will have a better survival rate. To achieve these goals, a thorough understanding of the renewal of the epitheliums and the role of the epithelial stem cells are mandatory.
Resumo:
A new quantitative approach of the mandibular sexual dimorphism, based on computer-aided image analysis and elliptical Fourier analysis of the mandibular outline in lateral view is presented. This method was applied to a series of 117 dentulous mandibles from 69 male and 48 female individuals native of Rhenish countries. Statistical discriminant analysis of the elliptical Fourier harmonics allowed the demonstration of a significant sexual dimorphism in 97.1% of males and 91.7% of females, i.e. in a higher proportion than in previous studies using classical metrical approaches. This original method opens interesting perspectives for increasing the accuracy of sex identification in current anthropological practice and in forensic procedures.
Resumo:
Establishing the links between phenotype and genotype is of great importance for resolving key questions about the evolution, maintenance and adaptive function of phenotypic variation. Bird colouration is one of the most studied systems to investigate the role of natural and sexual selection in the evolution of phenotypic diversity. Given the recent advances in molecular tools that allow discovering genetic polymorphisms and measuring gene and protein expression levels, it is timely to review the literature on the genetics of bird colouration. The present study shows that melanin-based colour phenotypes are often associated with mutations at melanogenic genes. Differences in melanin-based colouration are caused by switches of eumelanin to pheomelanin production or by changes in feather keratin structure, melanoblast migration and differentiation, as well as melanosome structure. Similar associations with other types of colourations are difficult to establish, because our knowledge about the molecular genetics of carotenoid-based and structural colouration is quasi inexistent. This discrepancy stems from the fact that only melanin-based colouration shows pronounced heritability estimates, i.e. the resemblance between related individuals is usually mainly explained by genetic factors. In contrast, the expression of carotenoid-based colouration is phenotypically plastic with a high sensitivity to variation in environmental conditions. It therefore appears that melanin-based colour traits are prime systems to understand the genetic basis of phenotypic variation. In this context, birds have a great potential to bring us to new frontiers where many exciting discoveries will be made on the genetics of phenotypic traits, such as colouration. In this context, a major goal of our review is to suggest a number of exciting future avenues.
Resumo:
Tumor-mobilized bone marrow-derived CD11b(+) myeloid cells promote tumor angiogenesis, but how and when these cells acquire proangiogenic properties is not fully elucidated. Here, we show that CD11b(+) myelomonocytic cells develop proangiogenic properties during their differentiation from CD34(+) hematopoietic progenitors and that placenta growth factor (PlGF) is critical in promoting this education. Cultures of human CD34(+) progenitors supplemented with conditioned medium from breast cancer cell lines or PlGF, but not from nontumorigenic breast epithelial lines, generate CD11b(+) cells capable of inducing endothelial cell sprouting in vitro and angiogenesis in vivo. An anti-Flt-1 mAb or soluble Flt-1 abolished the generation of proangiogenic activity during differentiation from progenitor cells. Moreover, inhibition of metalloproteinase activity, but not VEGF, during the endothelial sprouting assay blocked sprouting induced by these proangiogenic CD11b(+) myelomonocytes. In a mouse model of breast cancer, circulating CD11b(+) cells were proangiogenic in the sprouting assays. Silencing of PlGF in tumor cells prevented the generation of proangiogenic activity in circulating CD11b(+) cells, inhibited tumor blood flow, and slowed tumor growth. Peripheral blood of breast cancer patients at diagnosis, but not of healthy individuals, contained elevated levels of PlGF and circulating proangiogenic CD11b(+) myelomonocytes. Taken together, our results show that cancer cells can program proangiogenic activity in CD11b(+) myelomonocytes during differentiation of their progenitor cells in a PlGF-dependent manner. These findings impact breast cancer biology, detection, and treatment. Cancer Res; 71(11); 3781-91. ©2011 AACR.
Resumo:
Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species.
Resumo:
The mechanism by which the immune system produces effector and memory T cells is largely unclear. To allow a large-scale assessment of the development of single naive T cells into different subsets, we have developed a technology that introduces unique genetic tags (barcodes) into naive T cells. By comparing the barcodes present in antigen-specific effector and memory T cell populations in systemic and local infection models, at different anatomical sites, and for TCR-pMHC interactions of different avidities, we demonstrate that under all conditions tested, individual naive T cells yield both effector and memory CD8+ T cell progeny. This indicates that effector and memory fate decisions are not determined by the nature of the priming antigen-presenting cell or the time of T cell priming. Instead, for both low and high avidity T cells, individual naive T cells have multiple fates and can differentiate into effector and memory T cell subsets.
Resumo:
The species Formica aquilonia and F. lugubris of the mound-building red wood ants have a disjunct boreoalpine distribution in Europe. The populations of F. aquilonia in Finland, Switzerland and the British Isles show little genetic differentiation, whereas the populations of F. lugubris show considerable differentiation. The Central European populations morphologically identified as F. lugubris can be genetically divided into two groups (here called types A and B). Type B is found in the Alps and the Jura mountains, and is genetically inseparable from F. aquilonia. Type A lives sympatrically with type B in the Jura mountains and is also found in the British Isles. Sympatry of the two types in the Jura shows that these are separate species. It remains open whether type B is morphologically atypical F. aquilonia or whether it is a separate species, perhaps with a past history of introgression between F. aquilonia and F. lugubris. The gene frequencies in the Finnish populations of F. lugubris differ from those of both types A and B. Genetic differences within F. lugubris indicate that the populations have evolved separately for a long time. The social structure of F. lugubris colonies also shows geographic variation. The nests in Finland and the British Isles seem to be mainly monogynous and monodomous, whereas the nests in Central Europe are polygynous and form polydomous colonies. F. aquilonia has polygynous and polydomous colonies in all populations studied.