168 resultados para SPATIAL GENETIC-STRUCTURE
Resumo:
Epidemiological processes leave a fingerprint in the pattern of genetic structure of virus populations. Here, we provide a new method to infer epidemiological parameters directly from viral sequence data. The method is based on phylogenetic analysis using a birth-death model (BDM) rather than the commonly used coalescent as the model for the epidemiological transmission of the pathogen. Using the BDM has the advantage that transmission and death rates are estimated independently and therefore enables for the first time the estimation of the basic reproductive number of the pathogen using only sequence data, without further assumptions like the average duration of infection. We apply the method to genetic data of the HIV-1 epidemic in Switzerland.
Resumo:
Secondary contact zones have the potential to shed light on the mode and rate at which reproductive isolation accumulates during allopatric speciation. We investigated the population genetics of a contact zone between two highly divergent lineages of field voles (Microtus agrestis) in the Swiss Jura mountains. To shed light on the processes underlying introgression, we used maternally, paternally, and bi-parentally inherited markers. Though the two lineages maintained a strong genetic structure, we found some hybrids and evidence of gene flow. The extent of introgression varied with the mode of inheritance, being highest for mtDNA and absent for the Y chromosome. In addition, introgression was asymmetric, occurring only from the Northern to the Southern lineage. Both patterns seem parsimoniously explained by neutral processes linked to differences in effective sizes and sex-biased dispersal rates. The lineage with lower effective population size was also the more introgressed, and the mode-of-inheritance effect correlated with the male-biased dispersal rate of microtine rodents. We cannot exclude, however, that Haldane's effect contributed to the latter, as we found a marginally significant deficit in males (the heterogametic sex) among hybrids. We propose a possible demographic scenario to account for the patterns documented, and empirical extensions to further investigate this contact zone.
Resumo:
AimTo identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model.LocationSouth America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina.MethodsWe used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data.ResultsSimple bioclimatic models for Andean cats were highly predictive with only 3-4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions.Main conclusionsSimple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.
Resumo:
Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual's DNA can be used to infer their geographic origin with surprising accuracy-often to within a few hundred kilometres.
Resumo:
Thirteen new microsatellite loci were isolated and tested on two land snail species, Trochulus villosus and T. sericeus (Pulmonata: Hygromiidae), resulting in a set of eight polymorphic markers for each species. The expected heterozygosity was high for all loci and species (between 0.616 and 0.944). Such levels of variability will allow detailed insights into the population genetic structure of some Trochulus species.
Resumo:
To reliably differentiate among Staphylococcus aureus isolates we recently developed the Double Locus Sequence Typing (DLST) based on the analysis of partial sequences of clfB and spa genes. This method is highly discriminatory and gives unambiguous definition of types. The highly clonal population structure of S. aureus suggests that isolates with identical clfB or spa alleles belong to the same clonal complex (CC) defined by Multi-Locus Sequence Typing (MLST). To test this hypothesis as well as to investigate putative intra-CC genetic structure, we analyzed a total of 289 isolates (186 MSSA and 103 MRSA) with DLST-, spa- and MLST-typing. Among the 289 strains, 242 were clustered into 7 major MLST CCs, 40 into minor CCs and 7 were not grouped into CCs. A total of 205 DLST- and 129 spa-types were observed. With one exception, all DLST-clfB, DLST-spa and spa-type alleles were segregated into CCs. DLST-types sharing an identical allele (clfB or spa) were clustered using eBURST. Except for one strain, all isolates from each DLST cluster belonged to the same CC. However, using both DLST- and spa-typing we were not able to disclose a clear intra-CC structure. Nevertheless, the high diversity of these loci confirmed that they are good markers for local epidemiological investigations.
Resumo:
Social organisms exhibit conspicuous intraspecific variation in all facets of their social organization. A prominent example of such variation in the highly eusocial Hymenoptera is differences in the number of reproductive queens per colony, Differences in queen number in ants are associated with differences in a host of reproductive and social traits, including queen phenotype and breeding strategy, mode of colony reproduction, and pattern of sex allocation. We examine the causes and consequences of changes in colony queen number and associated traits using the fire ant Solenopsis invicta as a principal model. Ecological constraints on mode of colony founding may act as important selective forces causing the evolution of queen number in this and many other ants, with social organization generally perpetuated across generations by means of the social environment molding appropriate queen phenotypes and reproductive strategies. Shifts in colony queen number have profound effects on genetic structure within nests and may also influence genetic structure at higher levels (aggregations of nests or local demes) because of the association of queen number with particular mating and dispersal habits. Divergence of breeding habits between populations with different social organizations has the potential to promote genetic differentiation between these social variants. Thus, evolution of social organization can be important in generating intrinsic selective regimes that channel subsequent social evolution and in initiating the development of significant population genetic structure, including barriers to gene flow important in cladogenesis.
Resumo:
The extremely high rate of karyotypic evolution that characterizes the shrews of the Sorex araneus group makes this group an exceptionally interesting model for population genetics and evolutionary studies. Here, we attempted to map 46 microsatellite markers at the chromosome arm level using flow-sorted chromosomes from three karyotypically different taxa of the Sorex araneus group (S. granarius and the chromosome races Cordon and Novosibirsk of S. araneus). The most likely localizations were provided for 35 markers, among which 25 were each unambiguously mapped to a single locus on the corresponding chromosomes in the three taxa, covering the three sexual chromosomes (XY1Y2) and nine of the 18 autosomal arms of the S. araneus group. The results provide further evidence for a high degree of conservation in genome organization in the S. araneus group despite the presence of numerous Robertsonian rearrangements. These markers can therefore be used to compare the genetic structure among taxa of the S. araneus group at the chromosome level and to study the role of chromosomal rearrangements in the genetic diversification and speciation process of this group.
Resumo:
This study reports the isolation and characterization of seven highly polymorphic microsatellite loci in Silene vulgaris (Caryophyllaceae). The loci were isolated from two libraries constructed from genomic DNA enriched for CA and GA repeats. These markers yielded nine to 40 alleles per locus (mean 22.1) in a survey of 45 individuals from a single population located in the western Swiss Alps. Average observed heterozygosity ranged from 16.2 to 77.4%. These microsatellite loci should be valuable tools for studying fine-scale genetic structure.
Resumo:
*This study reconstructs the phylogeography of Aegilops geniculata, an allotetraploid relative of wheat, to discuss the impact of past climate changes and recent human activities (e.g. the early expansion of agriculture) on the genetic diversity of ruderal plant species. *We combined chloroplast DNA (cpDNA) sequencing, analysed using statistical parsimony network, with nonhierarchical K-means clustering of amplified fragment length polymorphism (AFLP) genotyping, to unravel patterns of genetic structure across the native range of Ae. geniculata. The AFLP dataset was further explored by measurement of the regional genetic diversity and the detection of isolation by distance patterns. *Both cpDNA and AFLP suggest an eastern Mediterranean origin of Ae. geniculata. Two lineages have spread independently over northern and southern Mediterranean areas. Northern populations show low genetic diversity but strong phylogeographical structure among the main peninsulas, indicating a major influence of glacial cycles. By contrast, low genetic structuring and a high genetic diversity are detected in southern Mediterranean populations. Finally, we highlight human-mediated dispersal resulting in substantial introgression between resident and migrant populations. *We have shown that the evolutionary trajectories of ruderal plants can be similar to those of wild species, but are interfered by human activities, promoting range expansions through increased long-distance dispersal and the creation of suitable habitats.
Resumo:
Amphibians display wide variations in life-history traits and life cycles that should prove useful to explore the evolution of sex-biased dispersal, but quantitative data on sex-specific dispersal patterns are scarce. Here, we focused on Salamandra atra, an endemic alpine species showing peculiar life-history traits. Strictly terrestrial and viviparous, the species has a promiscuous mating system, and females reproduce only every 3 to 4 years. In the present study, we provide quantitative estimates of asymmetries in male vs. female dispersal using both field-based (mark-recapture) and genetic approaches (detection of sex-biased dispersal and estimates of migration rates based on the contrast in genetic structure across sexes and age classes). Our results revealed a high level of gene flow among populations, which stems exclusively from male dispersal. We hypothesize that philopatric females benefit from being familiar with their natal area for the acquisition and defence of an appropriate shelter, while male dispersal has been secondarily favoured by inbreeding avoidance. Together with other studies on amphibians, our results indicate that a species' mating system alone is a poor predictor of sex-linked differences in dispersal, in particular for promiscuous species. Further studies should focus more directly on the proximate forces that favour or limit dispersal to refine our understanding of the evolution of sex-biased dispersal in animals.
Resumo:
In social Hymenoptera (ants, bees, and wasps), the number of males that mate with the same queen affects social and genetic organization of the colony. However, the selective forces leading to single mating in certain conditions and multiple mating in others remain enigmatic. In this study, I investigated whether queens of the wood ant Formica paralugubris adopting different dispersal strategies varied in their mating frequency (the number of males with whom they mated). The frequency of multiple mating was determined by using microsatellite markers to genotype the sperm stored in the spermatheca of queens, and the validity of this method was confirmed by analysing mother-offspring combinations obtained from experimental single-queen colonies. Dispersing queens, which may found new colonies, did not mate with more males than queens that stayed within polygynous colonies, where the presence of numerous reproductive individuals ensured a high level of genetic diversity. Hence, this study provides no support to the hypotheses that multiple mating is beneficial because it increases genetic variability within colonies. Most of the F. paralugubris queens mated with a single male, whatever their dispersal strategy and life history. Moreover, multiple mating had little effect on colony genetic structure: the effective mating frequency was 1.11 when calculated from within-brood relatedness, and 1.13 when calculated from the number of mates detected in the sperm. Hence, occasional multiple mating by F. paralugubris queens may have no adaptive significance.
Resumo:
The species and races of the shrews of the Sorex araneus group exhibit a broad range of chromosomal polymorphisms. European taxa of this group are parapatric and form contact or hybrid zones that span an extraordinary variety of situations, ranging from absolute genetic isolation to almost free gene flow. This variety seems to depend for a large part on the chromosome composition of populations, which are primarily differentiated by various Robertsonian fusions of a subset of acrocentric chromosomes. Previous studies suggested that chromosomal rearrangements play a causative role in the speciation process. In such models, gene flow should be more restricted for markers on chromosomes involved in rearrangements than on chromosomes common in both parent species. In the present study, we address the possibility of such differential gene flow in the context of two genetically very similar but karyotypically different hybrid zones between species of the S. araneus group using microsatellite loci mapped to the chromosome arm level. Interspecific genetic structure across rearranged chromosomes was in general larger than across common chromosomes. However, the difference between the two classes of chromosomes was only significant in the hybrid zone where the complexity of hybrids is expected to be larger. These differences did not distinguish populations within species. Therefore, the rearranged chromosomes appear to affect the reproductive barrier between karyotypic species, although the strength of this effect depends on the complexity of the hybrids produced.
Resumo:
Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure (F(ST)) and within-deme heterozygosity (H(S)). A similar part of variance in median time to extinction was explained by a combination of local population size (N) and heterozygosity (H(S)). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.
Resumo:
We describe the development based on 454 pyrosequencing technology of thirteen microsatellite markers for two closely related species of lamprey: Lampetra fluviatilis and L. planeri. The number of alleles per locus ranged from 2 to 5 in L. fluviatilis and from 2 to 6 in L. planeri. Gene diversity ranged from 0.062 to 0.718 in L. fluviatilis and from 0.322 to 0.677 in L. planeri. These markers will be helpful to study population genetic structure of both species and resolve their taxonomic status as separate species or ecotypes of a single species.