88 resultados para SERIAL RINGS
Resumo:
In higher plants, roots acquire water and soil nutrients and transport them upward to their aerial parts. These functions are closely related to their anatomical structure; water and nutrients entering the root first move radially through several concentric layers of the epidermis, cortex, and endodermis before entering the central cylinder. The endodermis is the innermost cortical cell layer that features rings of hydrophobic cell wall material called the Casparian strips, which functionally resemble tight junctions in animal epithelia. Nutrient uptake from the soil can occur through three different routes that can be interconnected in various ways: the apoplastic route (through the cell wall), the symplastic route (through cellular connections), and a coupled trans-cellular route (involving polarized influx and efflux carriers). This Update presents recent advances in the radial transport of nutrients highlighting the coupled trans-cellular pathway and the roles played by the endodermis as a barrier.
Resumo:
Background & Aims: Single nucleotide polymorphisms (SNPs) associated with IL28B influence the outcome of peginterferon-alpha/ribavirin therapy of chronic hepatitis C virus (HCV) infection. We analyzed the kinetics of HCV RNA during therapy as a function of IL28B SNPs.Methods: IL28B SNPs rs8099917, rs12979860, and rs12980275 were genotyped in 242 HCV treatment-naive Caucasian patients (67% genotype 1, 28% genotype 2 or 3) receiving peginterferon-alpha 2a (180 mu g weekly) and ribavirin (1000-1200 mg daily) with serial HCV-RNA quantifications. Associations between IL28B polymorphisms and early viral kinetics were assessed, accounting for relevant covariates.Results: In the multivariate analyses for genotype 1 patients, the T allele of rs12979860 (T(rs12979860)) was an independent risk factor for a less pronounced first phase HCV RNA decline (log(10) 0.89 IU/ml among T carriers vs. 2.06 among others, adjusted p <0.001) and lower rapid (15% vs. 38%, adjusted p = 0.007) and sustained viral response rates (48% vs. 66%, adjusted p <0.001). In univariate analyses, Trs12979860 was also associated with a reduced second phase decline (p = 0.002), but this association was no longer significant after adjustment for the first phase decline (adjusted p = 0.8). In genotype 2/3 patients, Trs12979860 was associated with a reduced first phase decline (adjusted p = 0.04), but not with a second phase decline.Conclusions: Polymorphisms in IL28B are strongly associated with the first phase viral decline during peginterferon-alpha/ribavirin therapy of chronic HCV infection, irrespective of HCV genotype. (C) 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Resumo:
Endothelium-derived nitric oxide (EDNO) plays a pivotal role in regulating pulmonary circulation. To determine whether there is a heterogeneity in EDNO-mediated responses of different sized pulmonary vessels, we studied small and large isolated pulmonary arteries of newborn lambs (diameter, 0.4-0.7 and 1.5-2.5 mm, respectively). The isometric tension of vessel rings were recorded while suspended in organ chambers filled with modified Krebs-Ringer bicarbonate solution (95% O2-5% CO2, 37 degrees C). In vessels preconstricted with norepinephrine, acetylcholine and bradykinin induced a greater relaxation of small pulmonary arteries than of large pulmonary arteries. Acetylcholine, bradykinin, and nitric oxide also induced a greater increase in cGMP content in small arteries than in large ones. The responses to acetylcholine and bradykinin were endothelium-dependent and inhibited by nitro-L-arginine, an inhibitor of nitric oxide synthase. In vessels without endothelium, the response to nitric oxide was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase. The activity of soluble guanylyl cyclase of small arteries was greater than that of large arteries under basal conditions and after stimulation with S-nitroso-N-acetylpenicillamine, a nitric oxide donor. These results demonstrate that heterogeneity exists in EDNO-mediated relaxation of small and large pulmonary arteries in newborn lambs. A difference in the soluble guanylate cyclase activity of vascular smooth muscle may have contributed to this phenomenon.
Resumo:
The intravital diagnosis of intracranial arterial dissection is not always possible due to atypic and non-specific clinical and radiological presentations. The postmortem pathological examination of cerebral blood vessels is therefore necessary to establish or confirm the presence of a dissecting aneurysm of intracranial arteries. Most of the described cases showed no significant underlying vascular pathology. Here we present the case of a 24-year-old women who died 5 days after admission to the hospital for a rapidly developing right-sided hemisyndrome. Neuroradiological examination had revealed ill-defined bifrontal hypodense lesions and angiographic findings were compatible with a dissection of the left extracranial internal carotid artery with embolic subocclusion of both anterior cerebral arteries. The pathological evaluation ruled out a thromboembolic occlusion of cerebral arteries and an extracranial internal carotid artery dissection but showed an extended dissecting process of variable age in the anterior circulation of the circle of Willis. The dissected vessels showed pathological changes characteristic of segmental mediolytic "arteritis" [Slavin and Gonzalez-Vitale 1976]. To our knowledge this is the first report on intracranial arteries being affected by this pathologic entity. Our case illustrates the importance of a postmortem examination of dissecting aneurysms of intracranial arteries. Careful serial section studies of dissected intracranial arteries in young subjects should be performed and may allow for a better understanding of the vascular pathology underlying the dissection processus.
Resumo:
In Escherichia coli, the RuvA and RuvB proteins interact at Holliday junctions to promote branch migration leading to the formation of heteroduplex DNA. RuvA provides junction-binding specificity and RuvB drives ATP-dependent branch migration. Since RuvB contains sequence motifs characteristic of a DNA helicase and RuvAB exhibit helicase activity in vitro, we have analysed the role of DNA unwinding in relation to branch migration. A mutant RuvB protein, RuvB(D113E), mutated in helicase motif II (the DExx box), has been purified to homogeneity. The mutant protein forms hexameric rings on DNA similar to those formed by wild-type protein and promotes branch migration in the presence of RuvA. However, RuvB(D113E) exhibits reduced ATPase activity and is severely compromised in its DNA helicase activity. Models for RuvAB-mediated branch migration that invoke only limited DNA unwinding activity are proposed.
Resumo:
Purpose: We report an unusual appearance of fundus autofluorescence (FAF) associated with NR2E3-p.G56R-linked autosomal dominant retinitis pigmentosa (ADRP).Methods: Patients were enrolled among three generations in a Swiss family. Molecular diagnosis identified a c.166G>A (p.G56R) mutation. Ophthalmic examination included fundus photography, FAF, near-infrared autofluorescence (NIA), optical coherence tomography (OCT) and visual fields (VF).Results: Fundus examination revealed a wide range of features from unremarkable to attenuated arterial caliber, clumped and spicular pigment deposits in the mid-periphery and optic nerve pallor. FAF showed a double concentric hyperautofluorescent ring: an inner perimacular ring which tended to be smaller in older patients, and an outer ring located along the vascular arcades, which appeared to extend over time towards the periphery and eventually became hypoautofluorescent. The inner and outer hyperautofluorescent rings were seen both on NIA and FAF at a similar localization. There was also a spatial correspondence between the loss of photoreceptor inner segment and outer segment junction on OCT and the area delimited by both double FAF and NIA rings. VF showed either midperipheral annular scotoma or constricted visual field loss in advanced cases, correlating with dystrophic non-functional retinal regions demarcated by the hyperautofluorescent annuli. A double ring of hyperautofluorescence was observed in all but one patient of two additional families, but not in patients harboring mutations in other ADRP genes, including PRPF3, RHO, RP1, PRPH2, PROM1 and CTRP5.Conclusions: The presence of a double concentric hyperautofluorescent ring of FAF may represent a highly penetrant early phenotypic marker of NR2E3-p.G56R-linked ADRP.
Resumo:
We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.
Resumo:
We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains.
Resumo:
Hematopietic stem cells (HSCs) maintain life-long hematopoiesis in the bone marrow via their ability to self-renew and to differentiate into all blood lineages. Although a central role for the canonical wnt signaling pathway has been suggested in HSC self-renewal as well as in the development of B and T cells, conditional deletion of beta-catenin (which is considered to be essential for Wnt signaling) has no effect on hematopoiesis or lymphopoiesis. Here, we address whether this discrepancy can be explained by a redundant and compensatory function of gamma-catenin, a close homolog of beta-catenin. Unexpectedly, we find that combined deficiency of beta- and gamma-catenin in hematopoietic progenitors does not impair their ability to self-renew and to reconstitute all myeloid, erythroid, and lymphoid lineages, even in competitive mixed chimeras and serial transplantations. These results exclude an essential role for canonical Wnt signaling (as mediated by beta- and/or gamma-catenin) during hematopoiesis and lymphopoiesis.
Resumo:
Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.
Resumo:
Cancer stem cells that display tumor-initiating properties have recently been identified in several distinct types of malignancies, holding promise for more effective therapeutic strategies. However, evidence of such cells in sarcomas, which include some of the most aggressive and therapy-resistant tumors, has not been shown to date. Here, we identify and characterize cancer stem cells in Ewing's sarcoma family tumors (ESFT), a highly aggressive pediatric malignancy believed to be of mesenchymal stem cell (MSC) origin. Using magnetic bead cell separation of primary ESFT, we have isolated a subpopulation of CD133+ tumor cells that display the capacity to initiate and sustain tumor growth through serial transplantation in nonobese diabetic/severe combined immunodeficiency mice, re-establishing at each in vivo passage the parental tumor phenotype and hierarchical cell organization. Consistent with the plasticity of MSCs, in vitro differentiation assays showed that the CD133+ cell population retained the ability to differentiate along adipogenic, osteogenic, and chondrogenic lineages. Quantitative real-time PCR analysis of genes implicated in stem cell maintenance revealed that CD133+ ESFT cells express significantly higher levels of OCT4 and NANOG than their CD133- counterparts. Taken together, our observations provide the first identification of ESFT cancer stem cells and demonstration of their MSC properties, a critical step towards a better biological understanding and rational therapeutic targeting of these tumors.
Resumo:
The therapeutic efficacy of BAL9141 (formerly Ro 63-9141), a novel cephalosporin with broad in vitro activity that also has activity against methicillin-resistant Staphylococcus aureus (MRSA), was investigated in rats with experimental endocarditis. The test organisms were homogeneously methicillin-resistant S. aureus strain COL transformed with the penicillinase-encoding plasmid pI524 (COL Bla+) and homogeneously methicillin-resistant, penicillinase-producing isolate P8-Hom, selected by serial exposure of parent strain P8 to methicillin. The MICs of BAL9141 for these organisms (2 mg/liter) were low, and BAL9141was bactericidal in time-kill curve studies after 24 h of exposure to either two, four, or eight times the MIC. Rats with experimental endocarditis were treated in a three-arm study with a continuous infusion of BAL5788 (formerly Ro 65-5788), a carbamate prodrug of BAL9141, or with amoxicillin-clavulanate or vancomycin. The rats were administered BAL9141 to obtain steady-state target levels of 20, 10, and 5 mg of per liter or were administered either 1.2 g of amoxicillin-clavulanate (ratio 5:1) every 6 h or 1 g of vancomycin every 12 h at changing flow rates to simulate the pharmacokinetics produced in humans by intermittent intravenous treatment. Treatment was started 12 h after bacterial challenge and lasted for 3 days. BAL9141 was successful in the treatment of experimental endocarditis due to either MRSA isolate COL Bla+ or MRSA isolate P8-Hom at the three targeted steady-state concentrations and sterilized >90% of cardiac vegetations (P < 0.005 versus controls; P < 0.05 versus amoxicillin-clavulanate and vancomycin treatment groups). These promising in vivo results with BAL9141 correlated with the high affinity of the drug for PBP 2a and its stability to penicillinase hydrolysis observed in vitro.
Resumo:
Drawing on Social Representations Theory, this study investigates focalisation and anchoring during the diffusion of information concerning the Large Hadron Collider (LHC), the particle accelerator at the European Organisation for Nuclear Research (CERN). We hypothesised that people focus on striking elements of the message, abandoning others, that the nature of the initial information affects diffusion of information, and that information is anchored in prior attitudes toward CERN and science. A serial reproduction experiment with two generations and four chains of reproduction diffusing controversial versus descriptive information about the LHC shows a reduction of information through generations, the persistence of terminology regarding the controversy and a decrease of other elements for participants exposed to polemical information. Concerning anchoring, positive attitudes toward CERN and science increase the use of expert terminology unrelated to the controversy. This research highlights the relevance of a social representational approach in the public understanding of science.