78 resultados para Run away from home


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal, voltage-independent Na(+) channels that are transiently activated by extracellular acidification. They are involved in pain sensation, the expression of fear, and in neurodegeneration after ischemic stroke. Our study investigates the role of extracellular subunit interactions in ASIC1a function. We identified two regions involved in critical intersubunit interactions. First, formation of an engineered disulfide bond between the palm and thumb domains leads to partial channel closure. Second, linking Glu-235 of a finger loop to either one of two different residues of the knuckle of a neighboring subunit opens the channel at physiological pH or disrupts its activity. This suggests that one finger-knuckle disulfide bond (E235C/K393C) sets the channel in an open state, whereas the other (E235C/Y389C) switches the channel to a non-conducting state. Voltage-clamp fluorometry experiments indicate that both the finger loop and the knuckle move away from the β-ball residue Trp-233 during acidification and subsequent desensitization. Together, these observations reveal that ASIC1a opening is accompanied by a distance increase between adjacent thumb and palm domains as well as a movement of Glu-235 relative to the knuckle helix. Our study identifies subunit interactions in the extracellular loop and shows that dynamic changes of these interactions are critical for normal ASIC function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is considerable agreement that the use of human bodies for teaching and research remains important, yet not all universities use dissection to teach human gross anatomy. The concept of body donation has evolved over centuries and there are still considerable discrepancies among countries regarding the means by which human bodies are acquired and used for education and research. Many countries have well-established donation programs and use body dissection to teach most if not all human gross anatomy. In contrast, there are countries without donation programs that use unclaimed bodies or perhaps a few donated bodies instead. In several countries, use of cadavers for dissection is unthinkable for cultural or religious reasons. Against this background, successful donation programs are highlighted in the present review, emphasizing those aspects of the programs that make them successful. Looking to the future, we consider what best practice could look like and how the use of unclaimed bodies for anatomy teaching could be replaced. From an ethical point of view, countries that depend upon unclaimed bodies of dubious provenance are encouraged to use these reports and adopt strategies for developing successful donation programs. In many countries, the act of body donation has been guided by laws and ethical frameworks and has evolved alongside the needs for medical knowledge and for improved teaching of human anatomy. There will also be a future need for human bodies to ensure optimal pre- and post-graduate training and for use in biomedical research. Good body donation practice should be adopted wherever possible, moving away from the use of unclaimed bodies of dubious provenance and adopting strategies to favor the establishment of successful donation programs. Clin. Anat. 29:11-18, 2016. © 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips-cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.