87 resultados para Rrna Gene Transcription
Resumo:
Electron microscopic analysis of heteroduplexes between the most distantly related Xenopus vitellogenin genes (A genes X B genes) has revealed the distribution of homologous regions that have been preferentially conserved after the duplication events that gave rise to the multigene family in Xenopus laevis. DNA sequence analysis was limited to the region downstream of the transcription initiation site of the Xenopus genes A1, B1 and B2 and a comparison with the Xenopus A2 and the major chicken vitellogenin gene is presented. Within the coding regions of the first three exons, nucleotide substitutions resulting in amino acid changes accumulate at a rate similar to that observed in globin genes. This suggests that the duplication event which led to the formation of the A and B ancestral genes in Xenopus laevis occurred about 150 million years ago. Homologous exons of the A1-A2 and B1-B2 gene pairs, which formed about 30 million years ago, show a quite similar sequence divergence. In contrast, A1-A2 homologous introns seem to have evolved much faster than their B1-B2 counterparts.
Resumo:
We have previously reported on the death effector domain containing E8 gene product from equine herpesvirus-2, designated FLICE inhibitory protein (v-FLIP), and on its cellular homologue, c-FLIP, which inhibit the activation of caspase-8 by death receptors. Here we report on the structure and function of the E10 gene product of equine herpesvirus-2, designated v-CARMEN, and on its cellular homologue, c-CARMEN, which contain a caspase-recruiting domain (CARD) motif. c-CARMEN is highly homologous to the viral protein in its N-terminal CARD motif but differs in its C-terminal extension. v-CARMEN and c-CARMEN interact directly in a CARD-dependent manner yet reveal different binding specificities toward members of the tumor necrosis factor receptor-associated factor (TRAF) family. v-CARMEN binds to TRAF6 and weakly to TRAF3 and, upon overexpression, potently induces the c-Jun N-terminal kinase (JNK), p38, and nuclear factor (NF)-kappaB transcriptional pathways. c-CARMEN or truncated versions thereof do not appear to induce JNK and NF-kappaB activation by themselves, nor do they affect the JNK and NF-kappaB activating potential of v-CARMEN. Thus, in contrast to the cellular homologue, v-CARMEN may have additional properties in its unique C terminus that allow for an autonomous activator effect on NF-kappaB and JNK. Through activation of NF-kappaB, v-CARMEN may regulate the expression of the cellular and viral genes important for viral replication.
Resumo:
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Resumo:
T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.
Resumo:
A vaccinia virus late gene coding for a major structural polypeptide of 11 kDa was sequenced. Although the 5' flanking gene region is very A+T rich, it shows little homology either to the corresponding region of vaccinia early genes or to consensus sequences characteristic of most eukaryotic genes. Three DNA fragments (100, 200, and 500 base pairs, respectively), derived from the flanking region and including the late gene mRNA start site, were inserted into the coding sequence of the vaccinia virus thymidine kinase (TK) early gene by homologous in vivo recombination. Recombinants were selected on the basis of their TK- phenotype. Cells were infected with the recombinant viruses and RNA was isolated at 1-hr intervals. Transcripts initiating either from the TK early promoter, or from the late gene promoter at its authentic position, or from the translocated late gene promoters within the early gene were detected by nuclease S1 mapping. Early after infection, only transcripts from the TK early promoter were detected. Later in infection, however, transcripts were also initiated from the translocated late promoters. This RNA appeared at the same time and in similar quantities as the RNA from the late promoter at its authentic position. No quantitative differences in promoter efficiency between the 100-, 200-, and 500-base-pair insertions were observed. We conclude that all necessary signals for correct regulation of late-gene expression reside within only 100 base pairs of 5' flanking sequence.
Resumo:
The isolation of the four Xenopus laevis vitellogenin genes has been completed by the purification from a DNA library of the B2 gene together with its flanking sequences. The overlapping DNA fragments analyzed cover 34 kilobases. The B2 gene which has a length of 17.5 kilobases was characterized by heteroduplex and R-loop mapping in the electron microscope and by in vitro transcription in a HeLa whole-cell extract. Its structural organization is compared with that of the closely related B1 gene. The mRNA-coding sequence of about 6 kilobases is interrupted 34 times in the B1 gene and 33 times in the B2 gene. Sequence homology between the two genes was not only found in exons. In addition, 54% of the intron sequences as well as 63% and 48.5% respectively of the 5' and 3' flanking sequences, show enough homology to form stable duplexes. These findings are compared with earlier results obtained with the two other closely related members of the vitellogenin gene family, the A1 and the A2 genes.
Resumo:
Stable ternary transcription complexes assembled in vitro, using a HeLa whole-cell extract, have been isolated and visualized by electron microscopy. The formation of these stable complexes on the DNA fragment used as template, the 5' end region of the Xenopus laevis vitellogenin gene B2, depends on factors present in the whole-cell extract, RNA polymerase II and at least two nucleotides. Interestingly, bending in the DNA fragment was frequently observed at the binding site of RNA polymerase II. Dinucleotides that can prime initiation within a short sequence of approximately 10 contiguous nucleotides centered around the initiation site used in vivo, also favour the formation of stable complexes. In addition, pre-initiation complexes were isolated and it was shown that factors in the extract involved in their formation are more abundant than the RNA polymerase II molecules available for binding. The possible implication of this observation relative to the in vivo situation is discussed.
Resumo:
Adiponectin serum concentrations are an important biomarker in cardiovascular epidemiology with heritability etimates of 30-70%. However, known genetic variants in the adiponectin gene locus (ADIPOQ) account for only 2%-8% of its variance. As transcription factors are thought to play an under-acknowledged role in carrying functional variants, we hypothesized that genetic polymorphisms in genes coding for the main transcription factors for the ADIPOQ promoter influence adiponectin levels. Single nucleotide polymorphisms (SNPs) at these genes were selected based on the haplotype block structure and previously published evidence to be associated with adiponectin levels. We performed association analyses of the 24 selected SNPs at forkhead box O1 (FOXO1), sterol-regulatory-element-binding transcription factor 1 (SREBF1), sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor gamma (PPARG) and transcription factor activating enhancer binding protein 2 beta (TFAP2B) gene loci with adiponectin levels in three different European cohorts: SAPHIR (n = 1742), KORA F3 (n = 1636) and CoLaus (n = 5355). In each study population, the association of SNPs with adiponectin levels on log-scale was tested using linear regression adjusted for age, sex and body mass index, applying both an additive and a recessive genetic model. A pooled effect size was obtained by meta-analysis assuming a fixed effects model. We applied a significance threshold of 0.0033 accounting for the multiple testing situation. A significant association was only found for variants within SREBF1 applying an additive genetic model (smallest p-value for rs1889018 on log(adiponectin) = 0.002, β on original scale = -0.217 µg/ml), explaining ∼0.4% of variation of adiponectin levels. Recessive genetic models or haplotype analyses of the FOXO1, SREBF1, SIRT1, TFAPB2B genes or sex-stratified analyses did not reveal additional information on the regulation of adiponectin levels. The role of genetic variations at the SREBF1 gene in regulating adiponectin needs further investigation by functional studies.
Resumo:
Approximately 520 Wilson disease-causing mutations in the ATP7B gene have been described to date. In this study we report DNA and RNA analyses carried out for molecular characterization of a consensus sequence splicing mutation found in homozygosity in a Swiss Wilson disease patient. RNA analysis of 1946 +6 T→C in both the peripheral lymphoblasts and liver resulted in the production in the propositus of only an alternative transcript lacking exons 6, 7, and 8 resulting most likely in alterations of cell biochemistry and disease. The patient presents an early form of severe hepatic disease characterized by hepatosplenomegaly, reduced hepatic function, anemia and thrombocytopenia indicating that 1946 +6 T→C is a severe mutation. Since identical results were obtained from both peripheral lymphoblasts and liver they also suggest that RNA studies of illegitimate transcripts can be safely used for molecular characterization of ATP7B splicing mutations, thus improving genetic counseling and diagnosis of Wilson disease. Moreover these studies, contribute to reveal the exact molecular mechanisms producing Wilson disease.
Resumo:
Gene transfer-based therapeutic approaches have greatly benefited from the ability of some viral vectors to efficiently integrate within the cell genome and ensure persistent transmission of newly acquired transgenes to the target cell progeny. However, integration of provirus has been associated with epigenetic repercussions that may influence the expression of both the transgene and cellular genes close to vector integration loci. The exploitation of genetic insulator elements may overcome both issues through their ability to act as barriers that limit transgene silencing and/or as enhancer-blockers preventing the activation of endogenous genes by the vector enhancer. We established quantitative plasmid-based assay systems to screen enhancer-blocker and barrier genetic elements. Short synthetic insulators that bind to nuclear factor-I protein family transcription factors were identified to exert both enhancer-blocker and barrier functions, and were compared to binding sites for the insulator protein CTCF (CCCTC-binding factor). Gamma-retroviral vectors enclosing these insulator elements were produced at titers similar to their non-insulated counterparts and proved to be less genotoxic in an in vitro immortalization assay, yielding lower activation of Evi1 oncogene expression and reduced clonal expansion of bone marrow cells.
Resumo:
Telomerase is an RNA-dependent DNA polymerase that synthesizes telomeric DNA. Its activity is not detectable in most somatic cells but it is reactivated during tumorigenesis. In most cancers, the combination of hTERT hypermethylation and hypomethylation of a short promoter region is permissive for low-level hTERT transcription. Activated and malignant lymphocytes express high telomerase activity, through a mechanism that seems methylation-independent. The aim of this study was to determine which mechanism is involved in the enhanced expression of hTERT in lymphoid cells. Our data confirm that in B cells, some T cell lymphomas and non-neoplastic lymph nodes, the hTERT promoter is unmethylated. Binding sites for the B cell-specific transcription factor PAX5 were identified downstream of the ATG translational start site through EMSA and ChIP experiments. ChIP assays indicated that the transcriptional activation of hTERT by PAX5 does not involve repression of CTCF binding. In a B cell lymphoma cell line, siRNA-induced knockdown of PAX5 expression repressed hTERT transcription. Moreover, ectopic expression of PAX5 in a telomerase-negative normal fibroblast cell line was found to be sufficient to activate hTERT expression. These data show that activation of hTERT in telomerase-positive B cells is due to a methylation-independent mechanism in which PAX5 plays an important role.