83 resultados para Regional population dynamics
Resumo:
1. The effect of a haematophageous ectoparasite, the hen flea, on quality an number of offspring was experimentally investigated in the great tit. The experiment consisted of a controlled infestation of a random sample of nests with the parasitic flea and of a regular treatment of control nests with Microwaves in order to eliminate the naturally occurring fleas. 2. To assess the effects of fleas on variables related to offspring number, we considered the number of hatchlings and fledglings, the mortality between hatching and fledging, and the hatching and fledging success. For assessment of offspring quality, we measured body mass, tarsus and wing length, and calculated the nutritional condition of, nestlings as the ratio of body mass to tarsus length. A physiological variable, the haematocrit level, was also measured. 3. Hatching success and hatchling numbers did not differ between the two experimental groups. Offspring mortality between hatching and fledging was significantly higher in the infested broods (xBAR = 0.22 chicks dead per day) than in the parasite-free broods (xBAR = 0.07 dead per day). Fledging success was 83% in the parasite-free broods, but only 53% in the infested ones. The number of fledglings in infested broods (xBAR = 3.7 fledglings +/-2.1 SD) was significantly lower than in the parasite-free (xBAR = 4.9 +/- 1.1 SD) broods. 4. Body mass of chicks in the infested broods was significantly smaller than in the parasite-free broods both 14 days and 17 days after hatching. The chicks in the infested broods reached a significantly smaller tarsus length than the ones in the parasite-free broods. Close to fledging, the nutritional condition of chicks was significantly lower in infested broods. Haematocrit levels were significantly lower in the infested broods. 5. Brood size correlated differently with body mass and condition of chicks in infested and parasite-free nests. In parasite-free broods both body mass and condition of chicks at age 17 days, i.e. close to fledging, were significantly higher in small broods than in large ones. However, in the infested broods chicks were of the same body mass and condition in large as in small broods. Therefore, in parasite-free broods fitness can potentially be gained through offspring quality or number or both, whereas in infested broods it can be gained through offspring quantity only. In other words, a trade-off between quality and number of offspring is feasible only in the absence of the parasitic hen flea. 6. These results emphasize the need to study the effects of ectoparasites on ecological, behavioural and evolutionary traits of their bird hosts. A knowledge of these effects is essential for the understanding of population dynamics, behaviour and life-history traits of the hosts.
Resumo:
The fire ant Solenopsis invicta is a significant pest that was inadvertently introduced into the southern United States almost a century ago and more recently into California and other regions of the world. An assessment of genetic variation at a diverse set of molecular markers in 2144 fire ant colonies from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta have occurred into newly invaded areas and that the main southern U.S. population is probably the source of all but one of these introductions. The sole exception involves a putative serial invasion from the southern United States to California to Taiwan. These results illustrate in stark fashion a severe negative consequence of an increasingly massive and interconnected global trade and travel system.
Resumo:
Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly reflect population sizes and trends. This study compares capture-mark-recapture (absolute abundance) and count-index (relative abundance) monitoring methods in three species (Maculinea nausithous and Iolana iolas: Lycaenidae; Minois dryas: Satyridae) in contrasted habitat types. We demonstrate that intraspecific variability in individual detectability under standard monitoring conditions is probably the rule rather than the exception, which questions the reliability of count-based indices to estimate and compare specific population abundance. Our results suggest that the accuracy of count-based methods depends heavily on the ecology and behavior of the target species, as well as on the type of habitat in which surveys take place. Monitoring programs designed to assess the abundance and trends in butterfly populations should incorporate a measure of detectability. We discuss the relative advantages and inconveniences of current monitoring methods and analytical approaches with respect to the characteristics of the species under scrutiny and resources availability.
Resumo:
Reproductive success is determined by the presence and timing of encounter of mates. The latter depends on species-specific reproductive characteristics (e.g. initiation/duration of the mating window), season, and reproductive strategies (e.g. intensity of choosiness) that may potentially mitigate constraints imposed by mating windows. Despite their potentially crucial role for fitness and population dynamics, limited evidence exists about mating window initiation, duration and reproductive strategies. Here, we experimentally tested the mechanisms of initiation and the duration of the common lizard's Zootoca vivipara mating window, by manipulating the timing of mate encounter and analyzing its effect on (re-)mating probability. We furthermore tested treatment effects on female reproductive strategies, by measuring female choosiness. The timing of mate encounter and season did not significantly affect mating probability. However, a longer delay until mate encounter reduced female choosiness. Re-mating probability decreased with re-mating delay and was independent of mating delay. This indicates that mating window initiation depends on mate encounter, that its duration is fixed, and that plastic reproductive strategies exist. These findings contrast with previous beliefs and shows that mating windows per se may not necessarily constrain reproductive success, which is congruent with rapid range expansion and absence of positive density-effects on reproductive success (Allee effects). In summary, our results show that predicting the effect of mating windows on reproduction is complex and that experimental evidence is essential for evaluating their effect on reproduction and reproductive strategies, both being important determinants of population dynamics and the colonization of new habitats.
Resumo:
Ocean currents, prevailing winds, and the hierarchical structures of river networks are known to create asymmetries in re-colonization between habitat patches. The impacts of such asymmetries on metapopulation persistence are seldom considered, especially rarely in theoretical studies. Considering three classical models (the island, the stepping stone and the distance-dependent model), we explore how metapopulation persistence is affected by (i) asymmetry in dispersal strength, in which the colonization rate between two patches differs in direction, and (ii) asymmetry in connectivity, in which the overall colonization pattern displays asymmetry (circulating or dendritic networks). Viability can be drastically reduced when directional bias in dispersal strength is higher than 25%. Re-colonization patterns that allow for strong local connectivity provide the highest persistence compared to systems that allow circulation. Finally, asymmetry has relatively weak effects when metapopulations maintain strong general connectivity.
Resumo:
Clonally reproducing hemicryptophytic rosette plants are common in the alpine belt. However, their demography, and indirectly their growth and reproductive strategy in these harsh conditions, was rarely studied. We analysed the morphology, clonal reproduction and demography of one such species, Leontopodium alpinum, in two populations of the Swiss Alps. The species forms small colonies of 1-5 (maximum 30) sterile rosettes with a few flowering stalks. After flowering, the apical meristem dies and one or two new axillary buds grow below the previous rosette in the following year, developing into short rhizomes (<2 cm), which decay after four years. The new stalk produces sterile rosettes before flowering after two to four years, depending on climatic conditions. The apical meristem often dies during the sterile stage, and is replaced by a new axillary bud. Levkovitch matrices on two stages (sterile and flowering rosettes) showed that rosette survival and clonal reproduction maintain long-lived populations (λ = 0.96). Elasticities indicated that a change in the survival of sterile rosettes had the strongest effect on population dynamics, and this stage lasts, on average, 6.8 years at 2480 m. Altogether, L. alpinum is following Tomlinson's architectural model. This growth form appears perfectly adapted to harsh alpine conditions: the clonal ramification ensures longevity to genets and the semelparous behaviour of the rosettes allows an efficient flowering, whatever the climatic conditions. L. alpinum appears to follow a common growth model among rosette possessing hemicryptophytes in the alpine belt.
Resumo:
Colonization is the crucial process underlying range expansions, biological invasions, and metapopulation dynamics. Which individuals leave their natal population to colonize empty habitats is a crucial question and is presently unresolved. Dispersal is the first step in colonization. However, not all dispersing individuals are necessarily good colonizers. Indeed, in some species, the phenotype of dispersers differs depending on the selective pressures that induce dispersal. In particular, kin-based interactions, a factor driving social evolution, should induce different social response profiles in nondispersing and dispersing individuals. Kin competition (defined here as between the mother and offspring) has been proven to produce dispersers with a particular phenotype that may enhance their colonizing ability. By using the common lizard (Lacerta vivipara), we conducted a multipopulation experiment to study the effect of kin competition on dispersal and colonization success. We manipulated mother-offspring interactions, which are the most important component of kin competition in the studied species, at the family and population levels and measured the consequences on colonization success. We demonstrate that mother-offspring competition at the population level significantly influences colonization success. Increased competition at the population level enhanced the colonization rate of the largest juveniles as well as the growth and survival of the colonizers. Based on these results, we calculated that kin-induced colonization halves the extinction probability of a newly initiated population. Because interactions between relatives are likely to affect the ability of a species to track habitat modifications, kin-based dispersal should be considered in the study of invasion dynamics and metapopulation functioning.
Lifetime and intergenerational fitness consequences of harmful male interactions for female lizards.
Resumo:
Male mating behaviors harmful to females have been described in a wide range of species. However, the direct and indirect fitness consequences of harmful male behaviors have been rarely quantified for females and their offspring, especially for long-lived organisms under natural conditions. Here, lifetime and intergenerational consequences of harmful male interactions were investigated in female common lizards (Lacerta vivipara) using field experiments. We exposed females to male harm by changing the population sex ratio from a normal female-biased to an experimental male-biased sex ratio during the first experimental year. Thereafter, females and their first generation of offspring were monitored during two additional years in a common garden with a female-biased sex ratio. We found strong immediate fitness costs and lower lifetime reproductive success in females subjected to increased male exposure. The immediate fitness costs were partly mitigated by direct compensatory responses after exposure to male excess, but not by indirect benefits through offspring growth, offspring survival, or mating success of offspring. These results support recent empirical findings showing that the direct costs of mating are not outweighed by indirect benefits.