104 resultados para Reference frame
Resumo:
Increased renal resistive index (RRI) has been recently associated with target organ damage and cardiovascular or renal outcomes in patients with hypertension and diabetes mellitus. However, reference values in the general population and information on familial aggregation are largely lacking. We determined the distribution of RRI, associated factors, and heritability in a population-based study. Families of European ancestry were randomly selected in 3 Swiss cities. Anthropometric parameters and cardiovascular risk factors were assessed. A renal Doppler ultrasound was performed, and RRI was measured in 3 segmental arteries of both kidneys. We used multilevel linear regression analysis to explore the factors associated with RRI, adjusting for center and family relationships. Sex-specific reference values for RRI were generated according to age. Heritability was estimated by variance components using the ASSOC program (SAGE software). Four hundred women (mean age±SD, 44.9±16.7 years) and 326 men (42.1±16.8 years) with normal renal ultrasound had mean RRI of 0.64±0.05 and 0.62±0.05, respectively (P<0.001). In multivariable analyses, RRI was positively associated with female sex, age, systolic blood pressure, and body mass index. We observed an inverse correlation with diastolic blood pressure and heart rate. Age had a nonlinear association with RRI. We found no independent association of RRI with diabetes mellitus, hypertension treatment, smoking, cholesterol levels, or estimated glomerular filtration rate. The adjusted heritability estimate was 42±8% (P<0.001). In a population-based sample with normal renal ultrasound, RRI normal values depend on sex, age, blood pressure, heart rate, and body mass index. The significant heritability of RRI suggests that genes influence this phenotype.
Resumo:
This paper presents the recent history of a large prealpine lake (Lake Bourget) using chironomids, diatoms and organic matter analysis, and deals with the ability of paleolimnological approach to define an ecological reference state for the lake in the sense of the European Framework Directive. The study at low resolution of subfossil chironomids in a 4-m-long core shows the remarkable stability over the last 2.5 kyrs of the profundal community dominated by a Micropsectra-association until the beginning of the twentieth century, when oxyphilous taxa disappeared. Focusing on this key recent period, a high resolution and multiproxy study of two short cores reveals a progressive evolution of the lake's ecological state. Until AD 1880, Lake Bourget showed low organic matter content in the deep sediments (TOC less than 1%) and a well-oxygenated hypolimnion that allowed the development of a profundal oxyphilous chironomid fauna (Micropsectra-association). Diatom communities were characteristic of oligotrophic conditions. Around AD 1880, a slight increase in the TOC was the first sign of changes in lake conditions. This was followed by a first limited decline in oligotrophic diatom taxa and the disappearance of two oxyphilous chironomid taxa at the beginning of the twentieth century. The 1940s were a major turning point in recent lake history. Diatom assemblages and accumulation of well preserved planktonic organic matter in the sediment provide evidence of strong eutrophication. The absence of profundal chironomid communities reveals permanent hypolimnetic anoxia. From AD 1995 to 2006, the diatom assemblages suggest a reduction in nutrients, and a return to mesotrophic conditions, a result of improved wastewater management. However, no change in hypolimnion benthic conditions has been shown by either the organic matter or the subfossil chironomid profundal community. Our results emphasize the relevance of the paleolimnological approach for the assessment of reference conditions for modern lakes. Before AD 1900, the profundal Micropsectra-association and the Cyclotella dominated diatom community can be considered as the Lake Bourget reference community, which reflects the reference ecological state of the lake.
Resumo:
The measurement of fat balance (fat input minus fat output) involves the accurate estimation of both metabolizable fat intake and total fat oxidation. This is possible mostly under laboratory conditions and not yet in free-living conditions. In the latter situation, net fat retention/mobilization can be estimated based on precise and accurate sequential body composition measurements. In case of positive balance, lipids stored in adipose tissue can originate from dietary (exogenous) lipids or from nonlipid precursors, mainly from carbohydrates (CHOs) but also from ethanol, through a process known as de novo lipogenesis (DNL). Basic equations are provided in this review to facilitate the interpretation of the different subcomponents of fat balance (endogenous vs exogenous) under different nutritional circumstances. One difficulty is methodological: total DNL is difficult to measure quantitatively in man; for example, indirect calorimetry only tracks net DNL, not total DNL. Although the numerous factors (mostly exogenous) influencing DNL have been studied, in particular the effect of CHO overfeeding, there is little information on the rate of DNL in habitual conditions of life, that is, large day-to-day fluctuations of CHO intakes, different types of CHO ingested with different glycemic indexes, alcohol combined with excess CHO intakes, etc. Three issues, which are still controversial today, will be addressed: (1) Is the increase of fat mass induced by CHO overfeeding explained by DNL only, or by decreased endogenous fat oxidation, or both? (2) Is DNL different in overweight and obese individuals as compared to their lean counterparts? (3) Does DNL occur both in the liver and in adipose tissue? Recent studies have demonstrated that acute CHO overfeeding influences adipose tissue lipogenic gene expression and that CHO may stimulate DNL in skeletal muscles, at least in vitro. The role of DNL and its importance in health and disease remain to be further clarified, in particular the putative effect of DNL on the control of energy intake and energy expenditure, as well as the occurrence of DNL in other tissues (such as in myocytes) in addition to hepatocytes and adipocytes.
Resumo:
Determination of fat-free mass (FFM) and fat mass (FM) is of considerable interest in the evaluation of nutritional status. In recent years, bioelectrical impedance analysis (BIA) has emerged as a simple, reproducible method used for the evaluation of FFM and FM, but the lack of reference values reduces its utility to evaluate nutritional status. The aim of this study was to determine reference values for FFM, FM, and %FM by BIA in a white population of healthy subjects, to observe the changes in these values with age, and to develop percentile distributions for these parameters. Whole-body resistance of 1838 healthy white men and 1555 women, aged 15-64 y, was determined by using four skin electrodes on the right hand and foot. FFM and FM were calculated according to formulas validated for the subject groups and analyzed for age decades. This is the first study to present BIA-determined age- and sex-specific percentiles for FFM, FM, and %FM for healthy subjects, aged 15-64 y. Mean FM and %FM increased progressively in men and after age 45 y in women. The results suggest that any weight gain noted with age is due to a gain in FM. In conclusion, the data presented as percentiles can serve as reference to evaluate the normality of body composition of healthy and ill subject groups at a given age.
Resumo:
BACKGROUND: Urine catecholamines, vanillylmandelic, and homovanillic acid are recognized biomarkers for the diagnosis and follow-up of neuroblastoma. Plasma free (f) and total (t) normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MT) could represent a convenient alternative to those urine markers. The primary objective of this study was to establish pediatric centile charts for plasma metanephrines. Secondarily, we explored their diagnostic performance in 10 patients with neuroblastoma. PROCEDURE: We recruited 191 children (69 females) free of neuroendocrine disease to establish reference intervals for plasma metanephrines, reported as centile curves for a given age and sex based on a parametric method using fractional polynomials models. Urine markers and plasma metanephrines were measured in 10 children with neuroblastoma at diagnosis. Plasma total metanephrines were measured by HPLC with coulometric detection and plasma free metanephrines by tandem LC-MS. RESULTS: We observed a significant age-dependence for tNMN, fNMN, and fMN, and a gender and age-dependence for tMN, fNMN, and fMN. Free MT was below the lower limit of quantification in 94% of the children. All patients with neuroblastoma at diagnosis were above the 97.5th percentile for tMT, tNMN, fNMN, and fMT, whereas their fMN and tMN were mostly within the normal range. As expected, urine assays were inconstantly predictive of the disease. CONCLUSIONS: A continuous model incorporating all data for a given analyte represents an appealing alternative to arbitrary partitioning of reference intervals across age categories. Plasma metanephrines are promising biomarkers for neuroblastoma, and their performances need to be confirmed in a prospective study on a large cohort of patients. Pediatr Blood Cancer 2015;62:587-593. © 2015 Wiley Periodicals, Inc.
Resumo:
Diagnostic reference levels (DRLs) were established for 21 indication-based CT examinations for adults in Switzerland. One hundred and seventy-nine of 225 computed tomography (CT) scanners operated in hospitals and private radiology institutes were audited on-site and patient doses were collected. For each CT scanner, a correction factor was calculated expressing the deviation of the measured weighted computed tomography dose index (CTDI) to the nominal weighted CTDI as displayed on the workstation. Patient doses were corrected by this factor providing a realistic basis for establishing national DRLs. Results showed large variations in doses between different radiology departments in Switzerland, especially for examinations of the petrous bone, pelvis, lower limbs and heart. This indicates that the concept of DRLs has not yet been correctly applied for CT examinations in clinical routine. A close collaboration of all stakeholders is mandatory to assure an effective radiation protection of patients. On-site audits will be intensified to further establish the concept of DRLs in Switzerland.
Resumo:
Background: Urine is still the matrix of choice to fight against doping, because it can be collected non-invasively during anti-doping tests. Most of the World Anti-Doping Agency's accredited laboratories have more than 20 years experience in analyzing this biological fluid and the majority of the compounds listed in the 2010 Prohibited List - International Standard are eliminated through the urinary apparatus. Storing and transporting urine samples for doping analyses does not include a specific protocol to prevent microbial and thermal degradation. The use of a rapid and reliable screening method could enable determine reference intervals for urine specimens in doping control samples and evaluate notably the prevalence of microbial contamination known to be responsible for the degradation of chemical substances in urine.Methods: The Sysmex(R) UF-500i is a recent urine flow cytometer analyzer capable of quantifying BACT and other urinary particles such as RBC, WBC, EC, DEBRIS, CAST, PATH. CAST, YLC, SRC as well as measuring urine conductivity. To determine urine anti-doping reference intervals, 501 samples received in our laboratory over a period of two months were submitted to an immediate examination. All samples were collected and then transported at room temperature. Analysis of variance was performed to test the effects of factors such as gender, test type [in-competition, out-of-competition] and delivery time.Results: The data obtained showed that most of the urine samples were highly contaminated with bacteria. The other urine particles were also very different according to the factors.Conclusions: The Sysmex(R) UF-500i was capable of providing a snapshot of urine particles present in the samples at the time of the delivery to the laboratory. These particles, BACT in particular, gave a good idea of the possible microbial degradation which had and/or could have occurred in the sample. This information could be used as the first quality control set up in WADA (World Anti-Doping Agency) accredited laboratories to determine if steroid profiles, endogenous and prohibited substances have possibly been altered. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).
Resumo:
BACKGROUND: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manual annotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results. RESULTS: The GENCODE gene features are divided into eight different categories of which only the first two (known and novel coding sequence) are confidently predicted to be protein-coding genes. 5' rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentally verify the initial annotation. Of the 420 coding loci tested, 229 RACE products have been sequenced. They supported 5' extensions of 30 loci and new splice variants in 50 loci. In addition, 46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15 putative transcripts. We assessed the comprehensiveness of the GENCODE annotation by attempting to validate all the predicted exon boundaries outside the GENCODE annotation. Out of 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only two of them in intergenic regions. CONCLUSION: In total, 487 loci, of which 434 are coding, have been annotated as part of the GENCODE reference set available from the UCSC browser. Comparison of GENCODE annotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained within the two sets, which is a reflection of the high number of alternative splice forms with unique exons annotated. Over 50% of coding loci have been experimentally verified by 5' RACE for EGASP and the GENCODE collaboration is continuing to refine its annotation of 1% human genome with the aid of experimental validation.
Resumo:
Carnitine-free total parenteral nutrition (TPN) is claimed to result in a carnitine deficiency with subsequent impairment of fat oxidation. The present study was designed to evaluate the possible benefit of carnitine supplementation on postoperative fat and nitrogen utilization. Sixteen patients undergoing total esophagectomy were evenly randomized and received TPN without or with L-carnitine supplementation (74 mumol.kg-1.d-1) during 11 postoperative days. On day 11, a 4-h infusion of L-carnitine (125 mumol/kg) was performed in both groups. The effect of supplementation was evaluated by indirect calorimetry, N balance, and repeated measurements of plasma lipids and ketone bodies. Irrespective of continuous or acute supplementation, respiratory quotient and fat oxidation were similarly maintained throughout the study in both groups whereas N balance appeared to be more favorable without carnitine. We conclude that carnitine-supplemented TPN does not improve fat oxidation or promote N utilization in the postoperative phase.
Resumo:
Laboratory values of the most commonly assayed clinical chemistry variables were determined in selected elderly and healthy ambulatory populations. The upper and lower limits (2.5 and 97.5 fractiles) were compared with the adult reference values in use in university hospitals of Switzerland. The results suggest that conventional adult reference values can be used for most variables in the elderly and that these values are also useful in an ambulatory population.
Resumo:
One aim of this study is to determine the impact of water velocity on the uptake of indicator polychlorinated biphenyls (iPCBs) by silicone rubber (SR) and low-density polyethylene (LDPE) passive samplers. A second aim is to assess the efficiency of performance reference compounds (PRCs) to correct for the impact of water velocity. SR and LDPE samplers were spiked with 11 or 12 PRCs and exposed for 6 weeks to four different velocities (in the range of 1.6 to 37.7 cm s−1) in river-like flow conditions using a channel system supplied with river water. A relationship between velocity and the uptakewas found for each iPCB and enables to determine expected changes in the uptake due to velocity variations. For both samplers, velocity increases from 2 to 10 cm s−1, 30 cm s−1 (interpolated data) and 100 cm s−1 (extrapolated data) lead to increases of the uptake which do not exceed a factor of 2, 3 and 4.5, respectively. Results also showed that the influence of velocity decreased with increasing the octanol-water coefficient partition (log Kow) of iPCBs when SR is used whereas the opposite effect was observed for LDPE. Time-weighted average (TWA) concentrations of iPCBs in water were calculated from iPCB uptake and PRC release. These calculations were performed using either a single PRC or all the PRCs. The efficiency of PRCs to correct the impact of velocity was assessed by comparing the TWA concentrations obtained at the four tested velocities. For SR, a good agreement was found among the four TWA concentrations with both methods (average RSD b 10%). Also for LDPE, PRCs offered a good correction of the impact of water velocity (average RSD of about 10 to 20%). These results contribute to the process of acceptance of passive sampling in routine regulatory monitoring programs.