172 resultados para Reduction (Chemistry)
Resumo:
Postmortem chemistry is becoming increasingly essential in the forensic pathology routine and considerable progress has been made over the past years. Biochemical analyses of vitreous humor, cerebrospinal fluid, blood and urine may provide significant information in determining the cause of death or in elucidating forensic cases. Postmortem chemistry may essentially contribute in the determination of the cause of death when the pathophysiological changes involved in the death process cannot be detected by morphological methods (e.g. diabetes mellitus, alcoholic ketoacidosis and electrolytic disorders). It can also provide significant information and useful support in other forensic situations, including anaphylaxis, hypothermia, sepsis and hormonal disturbances. In this article, we present a review of the literature that covers this vast topic and we report the results of our observations. We have focused our attention on glucose metabolism, renal function and electrolytic disorders.
Resumo:
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.
Resumo:
OBJECTIVES: To preliminarily evaluate prospectively the accuracy and reliability of a specific ad hoc reduction-compression forceps in intraoral open reduction of transverse and displaced mandibular angle fractures. STUDY DESIGN: We analyzed the clinical and radiologic data of 7 patients with 7 single transverse and displaced angle fractures. An intraoral approach was performed in all of the patients without using perioperative intermaxillary fixation. A single Arbeitsgemeinschaft Osteosynthese (AO) unilock reconstruction plate was fixed to each stable fragment with 3 locking screws (2.0 mm in 5 patients and 2.4 mm in 2 patients) at the basilar border of the mandible, according to AO/American Society of Internal Fixation (ASIF) principles. Follow-up was at 1, 3, 6, and 12 months, and we noted the status of healing and complications, if any. RESULTS: All of the patients had satisfactory fracture reduction as well as a successful treatment outcome without complications. CONCLUSION: This preliminary study demonstrated that the intraoral reduction of transverse and displaced angle fractures using a specific ad hoc reduction-forceps results in a high rate of success.
Resumo:
The thermal springs of Acquarossa and the nearby mineral springs of Soia have outlet temperatures of 12 degrees to 25 degrees C, TDS of 2290 to 3000 mg/kg and Ca-SO4 to Ca-SO4-HCO3 composition. Chemical geothermometers suggest reservoir temperatures close to 60 degrees C. P-CO2 values at depth are estimated to range from 0.3 to 2 bar. delta D and delta(18)O values indicate a meteoric origin and recharge elevations of 1600 +/- 150 m above sea level (a.s.l.) for these thermal and mineral waters. All these waters discharge from the overturned limb of the Simano nappe, probably dose to the contact between basement and underlying cover rocks. They therefore represent rain waters that descend slowly, heat at depth and locally rise relatively quickly to the surface, preserving part of their physical and chemical characteristics. (C) 1999 CNR. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Neutrophils are key components of the inflammatory response and as such contribute to the killing of microorganisms. In addition, recent evidence suggests their involvement in the development of the immune response. The role of neutrophils during the first weeks post-infection with Leishmania donovani was investigated in this study. When L. donovani-infected mice were selectively depleted of neutrophils with the NIMP-R14 monoclonal antibody, a significant increase in parasite numbers was observed in the spleen and bone marrow and to a lesser extent in the liver. Increased susceptibility was associated with enhanced splenomegally, a delay in the maturation of hepatic granulomas, and a decrease in inducible nitric oxide synthase expression within granulomas. In the spleen, neutrophil depletion was associated with a significant increase in interleukin 4 (IL-4) and IL-10 levels and reduced gamma interferon secretion by CD4(+) and CD8(+) T cells. Increased production of serum IL-4 and IL-10 and higher levels of Leishmania-specific immunoglobulin G1 (IgG1) versus IgG2a revealed the preferential induction of Th2 responses in neutrophil-depleted mice. Altogether, these data suggest a critical role for neutrophils in the early protective response against L. donovani, both as effector cells involved in the killing of the parasites and as significant players influencing the development of a protective Th1 immune response.
Resumo:
Peroxisome proliferators regulate the transcription of genes by activating ligand-dependent transcription factors, which, due to their structure and function, can be assigned to the superfamily of nuclear hormone receptors. Three such peroxisome proliferator-activated receptors (PPAR alpha, beta, and gamma) have been cloned in Xenopus laevis. Their mRNAs are expressed differentially; xPPAR alpha and beta but not xPPAR gamma are expressed in oocytes and embryos. In the adult, expression of xPPAR alpha and beta appears to be ubiquitous, and xPPAR gamma is mainly observed in adipose tissue and kidney. Immunocytochemical analysis revealed that PPARs are nuclear proteins, and that their cytoplasmic-nuclear translocation is independent of exogenous activators. A target gene of PPARs is the gene encoding acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in the peroxisomal beta-oxidation of fatty acids. A peroxisome proliferator response element (PPRE), to which PPARs bind, has been identified within the promoter of the ACO gene. Besides the known xenobiotic activators of PPARs, such as hypolipidemic drugs, natural activators have been identified. Polyunsaturated fatty acids at physiological concentrations are efficient activators of PPARs, and 5,8,11,14-eicosatetraynoic acid (ETYA), which is the alkyne homolog of arachidonic acid, is the most potent activator of xPPAR alpha described to date. Taken together, our data suggest that PPARs have an important role in lipid metabolism.
Resumo:
Although hemoglobin (Hb) is mainly present in the cytoplasm of erythrocytes (red blood cells), lower concentrations of pure, cell-free Hb are released permanently into the circulation due to an inherent intravascular hemolytic disruption of erythrocytes. Previously it was shown that the interaction of Hb with bacterial endotoxins (lipopolysaccharides, LPS) results in a significant increase of the biological activity of LPS. There is clear evidence that the enhancement of the biological activity of LPS by Hb is connected with a disaggregation of LPS. From these findings one questions whether the property to enhance the biological activity of endotoxin, in most cases proven by the ability to increase the cytokine (tumor-necrosis-factor-alpha, interleukins) production in human mononuclear cells, is restricted to bacterial endotoxin or is a more general principle in nature. To elucidate this question, we investigated the interaction of various synthetic and natural virulence (pathogenicity) factors with hemoglobin of human or sheep origin. In addition to enterobacterial R-type LPS a synthetic bacterial lipopeptide and synthetic phospholipid-like structures mimicking the lipid A portion of LPS were analysed. Furthermore, we also tested endotoxically inactive LPS and lipid A compounds such as those from Chlamydia trachomatis. We found that the observations made for endotoxically active form of LPS can be generalized for the other synthetic and natural virulence factors: In every case, the cytokine-production induced by them is increased by the addition of Hb. This biological property of Hb is connected with its physical property to convert the aggregate structures of the virulence factors into one with cubic symmetry, accompanied with a considerable reduction of the size and number of the original aggregates.
Resumo:
Connexin36 (Cx36), a trans-membrane protein that forms gap junctions between insulin-secreting beta-cells in the Langerhans islets, contributes to the proper control of insulin secretion and beta-cell survival. Hypercholesterolemia and pro-atherogenic low density lipoproteins (LDL) contribute to beta-cell dysfunction and apoptosis in the context of Type 2 diabetes. We investigated the impact of LDL-cholesterol on Cx36 levels in beta-cells. As compared to WT mice, the Cx36 content was reduced in islets from hypercholesterolemic ApoE-/- mice. Prolonged exposure to human native (nLDL) or oxidized LDL (oxLDL) particles decreased the expression of Cx36 in insulin secreting cell-lines and isolated rodent islets. Cx36 down-regulation was associated with overexpression of the inducible cAMP early repressor (ICER-1) and the selective disruption of ICER-1 prevented the effects of oxLDL on Cx36 expression. Oil red O staining and Plin1 expression levels suggested that oxLDL were less stored as neutral lipid droplets than nLDL in INS-1E cells. The lipid beta-oxidation inhibitor etomoxir enhanced oxLDL-induced apoptosis whereas the ceramide synthesis inhibitor myriocin partially protected INS-1E cells, suggesting that oxLDL toxicity was due to impaired metabolism of the lipids. ICER-1 and Cx36 expressions were closely correlated with oxLDL toxicity. Cx36 knock-down in INS-1E cells or knock-out in primary islets sensitized beta-cells to oxLDL-induced apoptosis. In contrast, overexpression of Cx36 partially protected INS-1E cells against apoptosis. These data demonstrate that the reduction of Cx36 content in beta-cells by oxLDL particles is mediated by ICER-1 and contributes to oxLDL-induced beta-cell apoptosis.
Resumo:
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.
Resumo:
The aim of this study was to identify predictors of intentional use of the HIV risk reduction practices of serosorting, strategic positioning, and withdrawal before ejaculation during unprotected anal intercourse (UAI) with casual partners. A cross-sectional survey pertaining to the Swiss HIV behavioral surveillance system, using an anonymous self-administered questionnaire, was conducted in 2007 in a self-selected sample of men having sex with other men (MSM). Analysis was restricted to participants with UAI with casual partner(s) (N = 410). Logistic regression was used to estimate factors associated with intentional use of serosorting, strategic positioning, and withdrawal before ejaculation. In the previous 12 months, 71% of participants reported having UAI with a casual partner of different or unknown HIV-status. Of these, 47% reported practicing withdrawal, 38% serosorting, and 25% strategic positioning. In the 319 participants with known HIV-status, serosorting was associated with frequent Internet use to find partners (OR = 2.32), STI (OR = 2.07), and HIV testing in the past 12 months (OR = 1.81). Strategic positioning was associated with HIV-status (OR = 0.13) and having UAI with a partner of different or unknown HIV-status (OR = 3.57). Withdrawal was more frequently practiced by HIV-negative participants or participants reporting high numbers of sexual partners (OR = 2.48) and having UAI with a partner of unknown or different serostatus (OR = 2.08). Risk reduction practices are widely used by MSM, each practice having its own specificities. Further research is needed to determine the contextual factors surrounding harm reduction practices, particularly the strategic or opportunistic nature of their use.
Resumo:
We present a silicon chip-based approach for the enhanced sensitivity detection of surface-immobilized fluorescent molecules. Green fluorescent protein (GFP) is bound to the silicon substrate by a disuccinimidyl terephtalate-aminosilane immobilization procedure. The immobilized organic layers are characterized by surface analysis techniques, like ellipsometry, atomic force microscopy (AFM) and X-ray induced photoelectron spectroscopy. We obtain a 20-fold enhancement of the fluorescent signal, using constructive interference effects in a fused silica dielectric layer, deposited before immobilization onto the silicon. Our method opens perspectives to increase by an order of magnitude the fluorescent response of surface immobilized DNA- or protein-based layers for a variety of biosensor applications.
Resumo:
BACKGROUND: In contrast to wild type, interleukin-10-deficient (IL-10(-/-)) mice are able to clear Helicobacter infection. In this study, we investigated the immune response of IL-10(-/-) mice leading to the reduction of Helicobacter infection. MATERIALS AND METHODS: We characterized the immune responses of Helicobacter felis-infected IL-10(-/-) mice by studying the systemic antibody and cellular responses toward Helicobacter. We investigated the role of CD4(+) T cells in the Helicobacter clearance by injecting H. felis-infected IL-10(-/-) mice with anti-CD4 depleting antibodies. To examine the role of mast cells in Helicobacter clearance, we constructed and infected mast cells and IL-10 double-deficient mice. RESULTS: Reduction of Helicobacter infection in IL-10(-/-) mice is associated with strong humoral (fivefold higher serum antiurease antibody titers were measured in IL-10(-/-) in comparison to wild-type mice, p < .008) and cellular (urease-stimulated splenic CD4(+) T cells isolated from infected IL-10(-/-) mice produce 150-fold more interferon-gamma in comparison to wild-type counterparts, p < .008) immune responses directed toward Helicobacter. Depletion of CD4(+) cells from Helicobacter-infected IL-10(-/-) mice lead to the loss of bacterial clearance (rapid urease tests are threefold higher in CD4(+) depleted IL-10(-/-) in comparison to nondepleted IL-10(-/-) mice, p < .02). Mast cell IL-10(-/-) double-deficient mice clear H. felis infection, indicating that mast cells are unnecessary for the bacterial eradication in IL-10(-/-) mice. CONCLUSION: Taken together, these results suggest that CD4(+) cells are required for Helicobacter clearance in IL-10(-/-) mice. This reduction of Helicobacter infection is, however, not dependent on the mast cell population.
Resumo:
Carbonate mylonites with varying proportions of second-phase minerals were collected at positions of increasing metamorphic grade along the basal thrust of the Morcles nappe (Helvetic nappes, Switzerland). Variations of temperature, stress, and strain rate, changes in chemistry of solid and fluid phases, and differing degrees of strain localization and annealing were tracked by measuring the shapes, mean sizes, and size distributions of both matrix and second-phase grains, as well as crystal preferred orientation (CPO) of the matrix. Field structures suggest that strain rate was constant along the fault. The mean and distribution of the calcite grain sizes were affected most profoundly by temperature: Increased temperature, presumably accompanied by decreased stress, correlated with larger mean sizes and wider size distributions. At a given location, the matrix grains in mylonites with more second-phase particles are, on average, smaller, have narrower size distributions, and have more elongate shapes. For example, mylonites with 50 vol.% of second phases have matrix grain sizes half that of pure mylonites. Changes in calcite chemistry and the presence of synkinematic fluids seemed to influence microfabric only weakly. Temporal variations in conditions, such as exhumation-induced cooling, apparently provoke changes in temperature, stress, and strain rate along the nappe. These changes result in further strain localization during retrograde conditions and cause the grain size to be reduced by an additional 50%. The matrix CPO strengthens with increasing temperature or strain, but weakens and rotates with increasing second-phase content, These fabric changes suggest differing rates of grain growth, grain size reduction, and development of CPO owing to variations in the deformation conditions and, perhaps, mechanisms. To interpret natural mylonite structures or to extrapolate mechanical data to natural situations requires careful characterization of the microfabric, and, in particular, second-phase minerals. (c) 2007 Elsevier B.V, All rights reserved.
Resumo:
The plant cuticle composed of cutin, a lipid-derived polyester, and cuticular waxes covers the aerial portions of plants and constitutes a hydrophobic extracellular matrix layer that protects plants against environmental stresses. The botrytis-resistant 1 (bre1) mutant of Arabidopsis reveals that a permeable cuticle does not facilitate the entry of fungal pathogens in general, but surprisingly causes an arrest of invasion by Botrytis. BRE1 was identified to be long-chain acyl-CoA synthetase2 (LACS2) that has previously been shown to be involved in cuticle development and was here found to be essential for cutin biosynthesis. bre1/lacs2 has a five-fold reduction in dicarboxylic acids, the typical monomers of Arabidopsis cutin. Comparison of bre1/lacs2 with the mutants lacerata and hothead revealed that an increased permeability of the cuticle facilitates perception of putative elicitors in potato dextrose broth, leading to the presence of antifungal compound(s) at the surface of Arabidopsis plants that confer resistance to Botrytis and Sclerotinia. Arabidopsis plants with a permeable cuticle have thus an altered perception of their environment and change their physiology accordingly.