113 resultados para Reconstruction of fase space and correlation dimension
Resumo:
Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.
Resumo:
Does a conflict between inborn motor preferences and educational standards during childhood impact the structure of the adult human brain? To examine this issue, we acquired high-resolution T1-weighted magnetic resonance scans of the whole brain in adult "converted" left-handers who had been forced as children to become dextral writers. Analysis of sulcal surfaces revealed that consistent right- and left-handers showed an interhemispheric asymmetry in the surface area of the central sulcus with a greater surface contralateral to the dominant hand. This pattern was reversed in the converted group who showed a larger surface of the central sulcus in their left, nondominant hemisphere, indicating plasticity of the primary sensorimotor cortex caused by forced use of the nondominant hand. Voxel-based morphometry showed a reduction of gray matter volume in the middle part of the left putamen in converted left-handers relative to both consistently handed groups. A similar trend was found in the right putamen. Converted subjects with at least one left-handed first-degree relative showed a correlation between the acquired right-hand advantage for writing and the structural changes in putamen and pericentral cortex. Our results show that a specific environmental challenge during childhood can shape the macroscopic structure of the human basal ganglia. The smaller than normal putaminal volume differs markedly from previously reported enlargement of cortical gray matter associated with skill acquisition. This indicates a differential response of the basal ganglia to early environmental challenges, possibly related to processes of pruning during motor development.
Resumo:
In West Timer, Triassic deposits are found in the Parautochthonous Complex, as well as in the Allochthonous series of Sonnebait. A detailed biostratigraphic investigation integrating field observations and facies analysis, allowed the reconstruction of a synthetic lithostratigraphic succession for the Upper Triassic, a stratigraphic transition from Carnian shales to Upper Norian-Rhaetian limestones is also shown by this study. The fossil content predominantly originates from an open marine environment; lithostratigraphic Units A-E are dated on the basis of radiolaria and palynomorphs, and Unit H, on ammonites and conodonts. The presence of pelagic bioclasts, together with normal grading, horizontal laminations, and current ripples, is indicative of a distal slope to basin environment. The ammonite rich condensed limestone of Unit H was deposited on a `pelagic carbonate plateau' exposed to storms and currents. The organic facies have been used as criteria for biostratigraphy, palaeoenvironmental interpretation, and sequence stratigraphy. The palaeontological analysis of the Triassic succession of West Timer is based on the investigation of radiolaria and palynomorphs, in the marls and limestones of Units A-E, and also on ammonites and conodonts in the condensed limestone of Unit H. Units A and B are Carnian (Cordevolian) in age, based on the occurrence of the palynomorph Camerosporites secatus, associated with `Lueckisporites' cf. singhii, Vallasporites ignacii, Patinosporites densus and Partitisporites novimundanus. Unit C is considered as Norian, on the basis of a relatively high percentage of Gliscopollis meyeriana and Granuloperculatipollis rudis. Unit D contains significant palynomorphs and radiolaria; the organic facies, characterized by marine elements, is dominated by the Norian dinocysts Heibergella salebrosacea and Heibergella aculeata; the radiolaria confirm the Norian age. They range from the lowermost Norian to the lower Upper Norian. Unit E also contains radiolaria, associated in the upper part with the well-known marker of the Upper Norian, Monotis salinaria. For Unit E, the radiolaria attest to a Lower to Upper Norian age based on the occurrence of Capnodoce and abundant Capnuchosphaera; the upper part is Upper Norian to Rhaetian based on the presence of Livarella valida. Finally, the blocks of condensed limestone with ammonites and conodonts of Unit H allowed the reconstruction of a synthetic stratigraphic succession of Upper Carnian to Upper Norian age. Our stratigraphic data lead to the suggestion that the Allochthonous complex, classically interpreted as a tectonic melange of the accretionary prism of the island Arc of Banda. is a tectonically dismembered part of a Triassic lithostratigraphic succession. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Results of a field and microstructural study between the northern and the central bodies of the Lanzo plagioclase peridotite massif (NW Italy) indicate that the spatial distribution of deformation is asymmetric across kilometre-scale mantle shear zones. The southwestern part of the shear zone (footwall) shows a gradually increasing degree of deformation from porphyroclastic peridotites to mylonite, whereas the northeastern part (hanging wall) quickly grades into weakly deformed peridotites. Discordant gabbroic and basaltic dykes are asymmetrically distributed and far more abundant in the footwall of the shear zone. The porphyroclastic peridotite displays porphyroclastic zones and domains of igneous crystallization whereas mylonites are characterized by elongated porphyroclasts, embedded between fine-grained, polycrystalline bands of olivine, plagioclase, clinopyroxene, orthopyroxene, spinel, rare titanian pargasite, and domains of recrystallized olivine. Two types of melt impregnation textures have been found: (1) clinopyroxene porphyroclasts incongruently reacted with migrating melt to form orthopyroxene plagioclase; (2) olivine porphyroclasts are partially replaced by interstitial orthopyroxene. The meltrock reaction textures tend to disappear in the mylonites, indicating that deformation in the mylonite continued under subsolidus conditions. The pyroxene chemistry is correlated with grain size. High-Al pyroxene cores indicate high temperatures (11001030C), whereas low-Al neoblasts display lower final equilibration temperatures (860C). The spinel Cr-number [molar Cr/(Cr Al)] and TiO2 concentrations show extreme variability covering almost the entire range known from abyssal peridotites. The spinel compositions of porphyroclastic peridotites from the central body are more variable than spinel from mylonite, mylonite with ultra-mylonite bands, and porphyroclastic rocks of the northern body. The spinel compositions probably indicate disequilibrium and would favour rapid cooling, and a faster exhumation of the central peridotite body, relative to the northern one. Our results indicate that melt migration and high-temperature deformation are juxtaposed both in time and space. Meltrock reaction may have caused grain-size reduction, which in turn led to localization of deformation. It is likely that melt-lubricated, actively deforming peridotites acted as melt focusing zones, with permeabilities higher than the surrounding, less deformed peridotites. Later, under subsolidus conditions, pinning in polycrystalline bands in the mylonites inhibited substantial grain growth and led to permanent weak zones in the upper mantle peridotite, with a permeability that is lower than in the weakly deformed peridotites. Such an inversion in permeability might explain why actively deforming, fine-grained peridotite mylonite acted as a permeability barrier and why ascending mafic melts might terminate and crystallize as gabbros along actively deforming shear zones. Melt-lubricated mantle shear zones provide a mechanism for explaining the discontinuous distribution of gabbros in oceancontinent transition zones, oceanic core complexes and ultraslow-spreading ridges.
Resumo:
BACKGROUND: Chest wall resection and reconstruction can be performed with minimal mortality and excellent functional and cosmetic results using synthetic meshes, methylmethacrylate, or other substitutes. However, these techniques are less easily applicable if chest wall resections have to be performed for infections. METHODS: We report a novel technique for this purpose using a modified latissimus dorsi flap harvested in continuity with the thoracolumbar fascia. The vascularized fascia was sutured into the chest wall defect, providing a stable base for the muscular component of the flap. Three patients requiring large full-thickness resections of the anterolateral chest wall for chronic infections were treated accordingly, two presenting with chronic radionecrosis and osteomyelitis and one with chest wall invasion by pulmonary aspergillosis. RESULTS: There were no intraoperative or postoperative complications and immediate extubation was possible in all 3 patients without the need for postoperative ventilation or tracheotomy. Healing of the infected chest wall was observed in all 3 patients. Postoperative cinemagnetic resonance imaging revealed concordant movements of the replaced segments without evidence of paradoxical motion during inspiration and expiration. CONCLUSIONS: This technique is easy and safe. It allows a stable and satisfactory reconstruction after large anterolateral full-thickness chest wall resections of infected, previously irradiated tissues, using only well-vascularized autologous tissue.
Resumo:
Early complications of myocutaneous flap transfers following surgical eradication of head and neck tumors have been extensively described. However, knowledge concerning long-term complications of these techniques remains limited. We report the cases of two patients with a prior history of squamous cell carcinoma of the head and neck (HNSCC), who developed a second primary SCC on the cutaneous surface of their flaps, years after reconstruction. Interestingly, it seems that the well-known risk of a second primary SCC in patients with previous head and neck carcinoma also applies to foreign tissues implanted within the area at risk. Given the important expansion of these interventions, this type of complication may become more frequent in the future. Therefore, long-term follow-up of patients previously treated for HNSCC not only requires careful evaluation of the normal mucosa of the upper aero-digestive tract, but also of the cutaneous surface of the flap used for reconstruction.
Resumo:
Various site-specific recombination enzymes produce different types of knots or catenanes while acting on circular DNA in vitro and in vivo. By analysing the types of knots or links produced, it is possible to reconstruct the order of events during the reaction and to deduce the molecular "architecture" of the complexes that different enzymes form with DNA. Until recently it was necessary to use laborious electron microscopy methods to identify the types of knots or catenanes that migrate in different bands on the agarose gels used to analyse the products of the reaction. We reported recently that electrophoretic migration of different knots and catenanes formed on the same size DNA molecules is simply related to the average crossing number of the ideal representations of the corresponding knots and catenanes. Here we explain this relation by demonstrating that the expected sedimentation coefficient of randomly fluctuating knotted or catenated DNA molecules in solution shows approximately linear correlation with the average crossing number of ideal configurations of the corresponding knots or catenanes.
Resumo:
OBJECTIVE: Fabry disease is an X-linked disorder resulting from alpha-galactosidase A deficiency. The cardiovascular findings include left ventricular hypertrophy (LVH) and increased intima-media thickness of the common carotid artery (CCA IMT). The current study examined the possible correlation between these parameters. To corroborate these clinical findings in vitro, plasma from Fabry patients was tested for possible proliferative effect on rat vascular smooth muscle cells (vascular smooth muscle cell [VSMC]) and mouse neonatal cardiomyocytes. METHODS AND RESULTS: Thirty male and 38 female patients were enrolled. LVH was found in 60% of men and 39% of women. Increased CCA IMT was equally present in males and females. There was a strong positive correlation between LV mass and CCA IMT (r2=0.27; P<0.0001). VSMC and neonatal cardiomyocyte proliferative response in vitro correlated with CCA IMT (r2=0.39; P<0.0004) and LV mass index (r2=0.19; P=0.028), respectively. CONCLUSIONS: LVH and CCA IMT occur concomitantly in Fabry suggesting common pathogenesis. The underlying cause may be a circulating growth-promoting factor whose presence has been confirmed in vitro.
Resumo:
Ethyl glucuronide (EtG) is a minor and specific metabolite of ethanol. It is incorporated into growing hair, allowing a retrospective detection of alcohol consumption. However, the suitability of quantitative EtG measurements in hair to determine the quantity of alcohol consumed has not clearly been demonstrated yet. The purpose of this study was to evaluate the influence of ethanol dose and hair pigmentation on the incorporation of EtG into rat hair. Ethanol and EtG kinetics in blood were investigated after a single administration of ethanol. Eighteen rats were divided into four groups receiving 0 (control group), 1, 2, or 3g ethanol/kg body weight. Ethanol was administered on 4 consecutive days per week for 3 weeks by intragastric route. Twenty-eight days after the initial ethanol administration, newly grown hair was shaved. Pigmented and nonpigmented hair were analyzed separately by gas chromatography coupled to tandem mass spectrometry. Blood samples were collected within 12h after the ethanol administration. EtG and ethanol blood levels were measured by liquid chromatography coupled to tandem mass spectrometry and headspace gas chromatography-flame ionization detector, respectively. No statistically significant difference was observed in EtG concentrations between pigmented and nonpigmented hair (Spearman's rho=0.95). Thus, EtG incorporation into rat hair was not affected by hair pigmentation. Higher doses of ethanol resulted in greater blood ethanol area under the curve of concentration versus time (AUC) and in greater blood EtG AUC. A positive correlation was found between blood ethanol AUC and blood EtG AUC (Spearman's rho=0.84). Increased ethanol administration was associated with an increased EtG concentration in hair. Blood ethanol AUC was correlated with EtG concentration in hair (Pearson's r=0.89). EtG concentration in rat hair appeared to reflect the EtG concentration in blood. Ethanol was metabolized at a median rate of 0.22 g/kg/h, and the median elimination half-life of EtG was 1.21 h. This study supports that the bloodstream is likely to display a major role in the hair EtG incorporation.
Resumo:
The genus Hylomys was thought to be represented by a single widespread species. Biochemical and morphometric analyses of several Southeast Asian populations reveal that Sumatra is inhabited by two distinct species, the dwarf gymnure (H. parvus) and the lesser gymnure (H. suillus). The absence of interbreeding between these two groups along with their relatively ancient common origins are documented by several diagnostic loci and a large Nei's genetic distance (D = 0.353 +/- 0.035). The dwarf gymnure has been reported only from the slopes of the Mt. Kerinci volcano in Sumatra, where the species lives at higher elevations than its potential competitor, the lesser gymnure. Other populations of Hylomys from Java, Borneo, and Malaysia are more closely related to the Sumatran sample of H. suillus, but they exhibit strong interpopulational genetic differentiation (D = 0.165 +/- 0.040) that may be accounted for by their isolated montane habitat. In addition, a principal-components analysis based on 16 measurements of the skull clearly separates adult specimens of both species. There is little overlap in the measurements between H. suillus (which is larger) and H. parvus. On Sumatra where both species may be sympatric, the notched space between premaxillary tips, soft texture of the fur, and more delicate skull and dentition are diagnostic of H. parvus.
Resumo:
Objective: To demonstrate successful in situ aortoiliac reconstruction of an infected infrarenal aneurysm using one single superficial femoral vein (SFV). Methods: In situ reconstruction using the right SFV sutured in end-to-end anastomosis with the aorta and distally with the right common iliac artery and in end-to-side anastomosis with the left common iliac artery. Results: The operating time was less than reported for aortic in situ reconstruction with bilateral SFV harvesting. The duplex scan 3 months postoperatively showed permeability of the bypass without any anastomotic stenosis or pseudoaneurysm. The right common femoral, popliteal, and greater saphenous veins were patent without thrombus, and the patient did not complain about peripheral edema. Conclusions: The use of only one instead of both the SFVs for aortobiiliac in situ reconstruction might be a way to reduce operating time and allow autogenous venous reconstruction even in patients with limited availability of venous material.
Resumo:
Here we present a 30 000 years low-resolution climate record reconstructed from groundwater data. The investigated site is located in the Bohemian Cretaceous Basin, in the corridor between the Scandinavian ice sheet and the Alpine ice field. Noble gas temperatures (NGT), obtained from groundwater data, preserved multicentennial temperature variability and indicated a cooling of at least 5-7 °C during the last glacial maximum (LGM). This is further confirmed by the depleted δ18O and δ2H values at the LGM. High excess air (ΔNe) at the end of the Pleistocene is possibly related to abrupt changes in recharge dynamics due to progression and retreat of ice covers and permafrost. These results agree with the fact that during the LGM permafrost and small glaciers developed in the inner valleys of the Giant Mountains (located in the watershed of the aquifers). A temporal decrease of deuterium excess from the pre-industrial Holocene to present days is linked to an increase of the air temperatures, and probably also to an increase of water pressure at the source region of precipitation over the past few hundred years
Resumo:
The end-Permian mass extinction greatly affected the sedimentary record, but the sedimentary response was not limited to the Permian-Triassic boundary interval. This transformation extended to sedimentation that spanned the entire Early Triassic. Calcimicrobialites play an important role throughout this time interval, and at least four main events of anomalous carbonate deposition can be shown. A post-extinction calcimicrobial unit occurs above the extensive Permian skeletal carbonate platform exposed in the Taurus Mountains (southern Turkey), in south Armenia, north-west north and Central Iran along the Zagros Mountains. The calcimicrobial unit formed during the flooding of the platform that took place during the earliest Triassic. A similar calcimicrobialite formed during late Griesbachian to Dienerian time atop the shallow Permian skeletal carbonate platform largely exposed in south China. A third event occurred during the Early Olenekian on the first Mesozoic isolated pelagic plateau (Baid seamount, Oman Mountains). Here the change in carbonate sedimentation is reflected in the occurrence of thrombolites and carbonate seafloor fans. Near the end of Early Triassic time, unusual carbonate deposition is recorded both on an isolated pelagic plateau of the Western Tethys (Halstatt limestone of Dobrogea, Romania) and on the eastern Panthalassa margin of the western United States. In the western United States, the event is represented by stromatolites and thrombolites in the Virgin Limestone of the Moenkopi Formation and by seafloor fans in the middle and upper members of the Union Wash Formation. These unusual episodes of anomalous carbonate deposition illustrate a fundamental change in sedimentation that occurred in the aftermath of the end-Permian mass extinction.