271 resultados para Pulsed Dendritic Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The STEP HIV vaccine trial, which evaluated a replication-defective adenovirus type 5 (Ad5) vector vaccine, was recently stopped. The reasons for this included lack of efficacy of the vaccine and a twofold increase in the incidence of HIV acquisition among vaccinated recipients with increased Ad5-neutralizing antibody titers compared with placebo recipients. To model the events that might be occurring in vivo, the effect on dendritic cells (DCs) of Ad5 vector alone or treated with neutralizing antiserum (Ad5 immune complexes [IC]) was compared. Ad5 IC induced more notable DC maturation, as indicated by increased CD86 expression, decreased endocytosis, and production of tumor necrosis factor and type I interferons. We found that DC stimulation by Ad5 IC was mediated by the Fcgamma receptor IIa and Toll-like receptor 9 interactions. DCs treated with Ad5 IC also induced significantly higher stimulation of Ad5-specific CD8 T cells equipped with cytolytic machinery. In contrast to Ad5 vectors alone, Ad5 IC caused significantly enhanced HIV infection in DC-T cell cocultures. The present results indicate that Ad5 IC activates a DC-T cell axis that, together with the possible persistence of the Ad5 vaccine in seropositive individuals, may set up a permissive environment for HIV-1 infection, which could account for the increased acquisition of HIV-1 infection among Ad5 seropositive vaccine recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The mechanisms by which CD4+CD25+Foxp3+ T cells (Tregs) regulate effector T cells in a transplantation setting and their in vivo homeostasis still remain to be clarified. Using a mouse adoptive transfer and skin transplantation model, we analyzed the in vivo expansion, effector function and trafficking of effector T cells and donor-specific Tregs, in response to an allograft. Methods and materials: Antigen-specific Tregs were generated and expanded in vitro by culturing freshly isolated Tregs from BALB/c mice (H2d) with syngeneic dendritic cells pulsed with an allopeptide (here the Kb peptide derived from the MHC class I molecule of allogeneic H2b mice). Fluorescent-labelled CD4+CD25- naive T cells and donor-antigen-specific Tregs were transferred alone or coinjected into syngeneic BALB/c-Nude recipients transplanted with allogeneic C57BL/6xBALB/c donor skin. Results: As opposed to their in vitro hyporesponsiveness, Tregs divided in vivo, migrated and accumulated in the allograft draining lymph nodes (drLN) and within the graft. The co-transfer of Tregs did not modify the early proliferation and homing of CD4+CD25- T cells to secondary lymphoid organs. But, in the presence of Tregs, effector T cells produced significantly less IFN- and IL-2 effector cytokines, while higher amounts of IL-10 were detected in the spleen and drLN of these mice. Furthermore, time-course studies showed that Tregs were recruited into the allograft at a very early stage posttransplantation and prevented infiltration by effector T cells. Conclusion: Overall, our results suggest that suppression of graft rejection involves the early recruitment of donor-specific Tregs at the sites of antigenic challenge and that Tregs mainly regulate the effector arm of T cell alloresponses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. SUMMARY Based on functional and homing properties, two subsets of memory T lymphocytes have been defined both in humans and in mice. Central memory T cells (TCM cells) express the lymph node homing receptors CD62L and CCR7, have poor effector function and proliferate efficiently upon antigenic stimulation. Effector memory T cells (TEM cells) do not express CCR7, are mostly CD62L negative and therefore are excluded from lymph nodes, but are able to migrate to sites of inflammation where they exert immediate effector function by producing inflammatory cytokines and cytotoxic mediators. In the present work we have addressed two questions that emerged since the definition of TCM and TEM cells. Firstly, what are the priming conditions for generation of TCM and TEM and, secondly, what is the migratory capacity of TCM and TEM cells in inflammatory conditions. By using naive TCR-transgenic OT-I CD8+ T cells and OT-II CD4+ T cells and ovalbumin pulsed-mature dendritic cells (DCs) we set up an in vitro system in which the strength of T cell stimulation is controlled by varying the ratio of T cells and DCs and the duration of DC-T cell interaction. Using this system we found that precursors of TCM and TEM cells are generated at different strength of stimulation and that T cells capable of persisting in vivo in the absence of antigen and of mounting recall responses is optimally induced by intermediate stimulatory strength. In addition, we found that lymph nodes draining sites of mature DC or adjuvant inoculation recruit CD8+ CD62L- CCR7- effector and TEM cells. CD8+ T cell recruitment in reactive lymph nodes requires CXCR3 expression on T cells and occurs through high endothelial venules (HEVs) in concert with HEV lurninal expression of the CXCR3 ligand CXCL9. In reactive lymph nodes, recruited T cells establish stable interactions with and kill antigen-bearing DCs, limiting the ability of these DCs to activate CD4+ and CD8+ T cells. Taken togther these data define conditions for the generation of TCM and TEM cells and define an inflammatory pathway of effector T cell migration in lymph nodes. The inducible recruitment of blood-borne effector and TEM CD8+ cells to lymph nodes may represent a mechanism for terminating primary and limiting secondary immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) can release hundreds of membrane vesicles, called exovesicles, which are able to activate resting DCs and distribute antigen. Here, we examined the role of mature DC-derived exovesicles in innate and adaptive immunity, in particular their capacity to activate epithelial cells. Our analysis of exovesicle contents showed that exovesicles contain major histocompatibility complex-II, CD40, and CD83 molecules in addition to tumor necrosis factor (TNF) receptors, TNFRI and TNFRII, and are important carriers of TNF-alpha. These exovesicles are rapidly internalized by epithelial cells, inducing the release of cytokines and chemokines, but do not transfer an alloantigen-presenting capacity to epithelial cells. Part of this activation appears to involve the TNF-alpha-mediated pathway, highlighting the key role of DC-derived exovesicles, not only in adaptive immunity, but also in innate immunity by triggering innate immune responses and activating neighboring epithelial cells to release cytokines and chemokines, thereby amplifying the magnitude of the innate immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invariant NKT (iNKT) cells play key roles in host defense by recognizing lipid Ags presented by CD1d. iNKT cells are activated by bacterial-derived lipids and are also strongly autoreactive toward self-lipids. iNKT cell responsiveness must be regulated to maintain effective host defense while preventing uncontrolled stimulation and potential autoimmunity. CD1d-expressing thymocytes support iNKT cell development, but thymocyte-restricted expression of CD1d gives rise to Ag hyperresponsive iNKT cells. We hypothesized that iNKT cells require functional education by CD1d(+) cells other than thymocytes to set their correct responsiveness. In mice that expressed CD1d only on thymocytes, hyperresponsive iNKT cells in the periphery expressed significantly reduced levels of tyrosine phosphatase SHP-1, a negative regulator of TCR signaling. Accordingly, heterozygous SHP-1 mutant mice displaying reduced SHP-1 expression developed a comparable population of Ag hyperresponsive iNKT cells. Restoring nonthymocyte CD1d expression in transgenic mice normalized SHP-1 expression and iNKT cell reactivity. Radiation chimeras revealed that CD1d(+) dendritic cells supported iNKT cell upregulation of SHP-1 and decreased responsiveness after thymic emigration. Hence, dendritic cells functionally educate iNKT cells by tuning SHP-1 expression to limit reactivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les thérapies du cancer, comme la radiothérapie et la chimiothérapie, sont couramment utilisées mais ont de nombreux effets secondaires. Ces thérapies invasives pour le patient nécessitent d'être améliorées et de nombreuses avancées ont été faites afin d'adapter et de personnaliser le traitement du cancer. L'immunothérapie a pour but de renforcer le système immunitaire du patient et de le rediriger de manière spécifique contre la tumeur. Dans notre projet, nous activons les lymphocytes Invariant Natural Killer T (iNKT) afin de mettre en place une immunothérapie innovatrice contre le cancer. Les cellules iNKT sont une unique sous-population de lymphocytes T qui ont la particularité de réunir les propriétés de l'immunité innée ainsi qu'adaptative. En effet, les cellules iNKT expriment à leur surface des molécules présentes aussi sur les cellules tueuses NK, caractéristique de l'immunité innée, ainsi qu'un récepteur de cellules T (TCR) qui représente l'immunité adaptative. Les cellules iNKT reconnaissent avec leur TCR des antigènes présentés par la molécule CD1d. Les antigènes sont des protéines, des polysaccharides ou des lipides reconnus par les cellules du système immunitaire ou les anticorps pour engendrer une réponse immunitaire. Dans le cas des cellules iNKT, l'alpha-galactosylceramide (αGC) est un antigène lipidique fréquemment utilisé dans les études cliniques comme puissant activateur. Après l'activation des cellules iNKT avec l'αGC, celles-ci produisent abondamment et rapidement des cytokines. Ces cytokines sont des molécules agissant comme des signaux activateurs d'autres cellules du système immunitaire telles que les cellules NK et les lymphocytes T. Cependant, les cellules iNKT deviennent anergiques après un seul traitement avec l'αGC c'est à dire qu'elles ne peuvent plus être réactivées, ce qui limite leur utilisation dans l'immunothérapie du cancer. Dans notre groupe, Stirnemann et al ont publié une molécule recombinante innovante, composée de la molécule CD1d soluble et chargée avec le ligand αGC (αGC/sCD1d). Cette protéine est capable d'activer les cellules iNKT tout en évitant l'anergie. Dans le système immunitaire, les anticorps sont indispensables pour combattre une infection bactérienne ou virale. En effet, les anticorps ont la capacité de reconnaître et lier spécifiquement un antigène et permettent l'élimination de la cellule qui exprime cet antigène. Dans le domaine de l'immunothérapie, les anticorps sont utilisés afin de cibler des antigènes présentés seulement par la tumeur. Ce procédé permet de réduire efficacement les effets secondaires lors du traitement du cancer. Nous avons donc fusionné la protéine recombinante αGC/CD1d à un fragment d'anticorps qui reconnaît un antigène spécifique des cellules tumorales. Dans une étude préclinique, nous avons démontré que la protéine αGC/sCD1d avec un fragment d'anticorps dirigé contre la tumeur engendre une meilleure activation des cellules iNKT et entraîne un effet anti-tumeur prolongé. Cet effet anti-tumeur est augmenté comparé à une protéine αGC/CD1d qui ne cible pas la tumeur. Nous avons aussi montré que l'activation des cellules iNKT avec la protéine αGC/sCD1d-anti-tumeur améliore l'effet anti- tumoral d'un vaccin pour le cancer. Lors d'expériences in vitro, la protéine αGC/sCD1d-anti- tumeur permet aussi d'activer les cellules humaines iNKT et ainsi tuer spécifiquement les cellules tumorales humaines. La protéine αGC/sCD1d-anti-tumeur représente une alternative thérapeutique prometteuse dans l'immunothérapie du cancer. - Les cellules Invariant Natural Killer T (iNKT), dont les effets anti-tumoraux ont été démontrés, sont de puissants activateurs des cellules Natural Killer (NK), des cellules dendritiques (DC) et des lymphocytes T. Cependant, une seule injection du ligand de haute affinité alpha-galactosylceramide (αGC) n'induit une forte activation des cellules iNKT que durant une courte période. Celle-ci est alors suivie d'une longue phase d'anergie, limitant ainsi leur utilisation pour la thérapie. Comme alternative prometteuse, nous avons montré que des injections répétées d'αGC chargé sur une protéine recombinante de CD1d soluble (αGC/sCD1d) chez la souris entraînent une activation prolongée des cellules iNKT, associée à une production continue de cytokine. De plus, le maintien de la réactivité des cellules iNKT permet de prolonger l'activité anti-tumorale lorsque la protéine αGC/sCD1d est fusionnée à un fragment d'anticorps (scFv) dirigé contre la tumeur. L'inhibition de la croissance tumorale n'est optimale que lorsque les souris sont traitées avec la protéine αGC/sCD1d-scFv ciblant la tumeur, la protéine αGC/sCD1d-scFv non-appropriée étant moins efficace. Dans le système humain, les protéines recombinantes αGC/sCD1d-anti-HER2 et anti-CEA sont capables d'activer et de faire proliférer des cellules iNKT à partir de PBMCs issues de donneurs sains. De plus, la protéine αGC/sCD1d-scFv a la capacité d'activer directement des clones iNKT humains en l'absence de cellules présentatrices d'antigènes (CPA), contrairement au ligand αGC libre. Mais surtout, la lyse des cellules tumorales par les iNKT humaines n'est obtenue que lorsqu'elles sont incubées avec la protéine αGC/sCD1d-scFv anti- tumeur. En outre, la redirection de la cytotoxicité des cellules iNKT vers la tumeur est supérieure à celle obtenue avec une stimulation par des CPA chargées avec l'αGC. Afin d'augmenter les effets anti-tumoraux, nous avons exploité la capacité des cellules iNKT à activer l'immunité adaptive. Pour ce faire, nous avons combiné l'immunothérapie NKT/CD1d avec un vaccin anti-tumoral composé d'un peptide OVA. Des effets synergiques ont été obtenus lorsque les traitements avec la protéine αGC/sCD1d-anti-HER2 étaient associés avec le CpG ODN comme adjuvant pour la vaccination avec le peptide OVA. Ces effets ont été observés à travers l'activation de nombreux lymphocytes T CD8+ spécifique de la tumeur, ainsi que par la forte expansion des cellules NK. Les réponses, innée et adaptive, élevées après le traitement avec la protéine αGC/sCD1d-anti-HER2 combinée au vaccin OVA/CpG ODN étaient associées à un fort ralentissement de la croissance des tumeurs B16- OVA-HER2. Cet effet anti-tumoral corrèle avec l'enrichissement des lymphocytes T CD8+ spécifiques observé à la tumeur. Afin d'étendre l'application des protéines αGC/sCD1d et d'améliorer leur efficacité, nous avons développé des fusions CD1d alternatives. Premièrement, une protéine αGC/sCD1d dimérique, qui permet d'augmenter l'avidité de la molécule CD1d pour les cellules iNKT. Dans un deuxième temps, nous avons fusionné la protéine αGC/sCD1d avec un scFv dirigé contre le récepteur 3 du facteur de croissance pour l'endothélium vasculaire (VEGFR-3), afin de cibler l'environnement de la tumeur. Dans l'ensemble, ces résultats démontrent que la thérapie médiée par la protéine recombinante αGC/sCD1d-scFv est une approche prometteuse pour rediriger l'immunité innée et adaptive vers le site tumoral. - Invariant Natural Killer T cells (iNKT) are potent activators of Natural Killer (NK), dendritic cells (DC) and T lymphocytes, and their anti-tumor activities have been well demonstrated. However, a single injection of the high affinity CD1d ligand alpha-galactosylceramide (αGC) leads to a strong but short-lived iNKT cell activation followed by a phase of long-term anergy, limiting the therapeutic use of this ligand. As a promising alternative, we have demonstrated that when αGC is loaded on recombinant soluble CD1d molecules (αGC/sCD1d), repeated injections in mice led to the sustained iNKT cell activation associated with continued cytokine secretion. Importantly, the retained reactivity of iNKT cell led to prolonged antitumor activity when the αGC/sCD1d was fused to an anti-tumor scFv fragments. Optimal inhibition of tumor growth was obtained only when mice were treated with the tumor-targeted αGC/CD1d-scFv fusion, whereas the irrelevant αGC/CD1d-scFv fusion was less efficient. When tested in a human system, the recombinant αGC/sCD1d-anti-HER2 and -anti-CEA fusion proteins were able to expand iNKT cells from PBMCs of healthy donors. Furthermore, the αGC/sCD1d-scFv fusion had the capacity to directly activate human iNKT cells clones without the presence of antigen-presenting cells (APCs), in contrast to the free αGC ligand. Most importantly, tumor cell killing by human iNKT cells was obtained only when co- incubated with the tumor targeted sCD1d-antitumor scFv, and their direct tumor cytotoxicity was superior to the bystander killing obtained with αGC-loaded APCs stimulation. To further enhance the anti-tumor effects, we exploited the ability of iNKT cells to transactivate the adaptive immunity, by combining the NKT/CD1d immunotherapy with a peptide cancer vaccine. Interestingly, synergistic effects were obtained when the αGC/sCD1d- anti-HER2 fusion treatment was combined with CpG ODN as adjuvant for the OVA peptide vaccine, as seen by higher numbers of activated antigen-specific CD8 T cells and NK cells, as compared to each regimen alone. The increased innate and adaptive immune responses upon combined tumor targeted sCD1d-scFv treatment and OVA/CpG vaccine were associated with a strong delay in B16-OVA-HER2 melanoma tumor growth, which correlated with an enrichment of antigen-specific CD8 cells at the tumor site. In order to extend the application of the CD1d fusion, we designed alternative CD1d fusion proteins. First, a dimeric αGC/sCD1d-Fc fusion, which permits to augment the avidity of the CD1d for iNKT cells and second, an αGC/sCD1d fused to an anti vascular endothelial growth factor receptor-3 (VEGFR-3) scFv, in order to target tumor stroma environment. Altogether, these results demonstrate that the iNKT-mediated immunotherapy via recombinant αGC/sCD1d-scFv fusion is a promising approach to redirect the innate and adaptive antitumor immune response to the tumor site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last years, dendritic cells (DC) have been evaluated for antitumor vaccination. Although DC-based vaccines have raised great expectations, their clinical translation has been largely disappointing. For these results, several explanations have been proposed. In particular, the concomitant expression by DCs of tolerogenic pathways, such as the immunosuppressive agent indoleamine 2,3-dioxygenase-1 (IDO1), has been demonstrated. The aim of this study is to evaluate both the stimulatory and the tolerogenic feature of monocyte-derived DCs (Mo-DCs) after maturation with PGE2. In particular, the role of IDO1 expression in PGE2-matured Mo-DCs has been addressed. Here we show that PGE2, which is required for full maturation of DCs, is one mediator of DC tolerance by enhancing IDO1. PGE2-mediated expression of IDO1 results in the production of kynurenine, in the generation of Tregs, and in the inhibition of either the allogeneic or the autologous antigen-specific stimulatory capacity of DCs. When pulsed with leukemic lysates and matured with PGE2, DCs are impaired in the induction of IFN-γ secreting CD4(+) and CD8(+) T cells due to IDO1 upregulation. Moreover, the inhibition of IDO1 enhances the antileukemic response. Overall, these results point toward the use of IDO1 inhibitors to enhance the vaccination capacity of DCs, matured with PGE2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NK T cells produce cytokines when their semi-invariant TCR engages glycolipids associated with CD1d. The physiological consequences of NKT cell activation remain controversial, although they have been implicated in control of autoimmunity, parasites and tumors. We show here that specific activation of NKT cells in liver and spleen leads to a rapid induction of extensive NK cell proliferation and cytotoxicity. This NK cell activation is dependent, at least in part, on IFN-gamma production by NKT cells and IL-12 production by antigen-presenting cells. Remarkably, activation of NK cells by NKT cells is highly selective, since bystander T and B lymphocytes show transient expression of activation markers but almost no proliferation. Collectively our data suggest that CD1d-dependent NKT cells regulate innate immunity by sampling blood-borne glycolipid antigens and rapidly activating NK cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interleukin-7 (IL-7) is crucial for the development of T and B lymphocytes from common lymphoid progenitors (CLPs) and for the maintenance of mature T lymphocytes. Its in vivo role for dendritic cells (DCs) has been poorly defined. Here, we investigated whether IL-7 is important for the development or maintenance of different DC types. Bone marrow-derived DCs expressed the IL-7 receptor (IL-7R) and survived significantly longer in the presence of IL-7. Migratory DCs (migDCs) isolated from lymph nodes also expressed IL-7R. Surprisingly, IL-7R was not required for their maintenance but indirectly for their development. Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) resident in lymph nodes and spleen were IL-7R(-). Using mixed bone marrow chimeras, we observed an intrinsic requirement for IL-7R signals in their development. As the number of CLPs but not myeloid progenitors was reduced in the absence of IL-7 signals, we propose that a large fraction of cDCs and pDCs derives from CLPs and shares not only the lymphoid origin but also the IL-7 requirement with lymphocyte precursors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A particular feature of gammadelta T cell biology is that cells expressing T cell receptor (TCR) using specific Vgamma/Vdelta segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all gammadelta T cells express Vgamma3/Vdelta1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vgamma3+ thymocytes. The role of gammadelta TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR delta chain (Vdelta6.3-Ddelta1-Ddelta2-Jdelta1-Cdelta), which can pair with Vgamma3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vdelta6.3Tg mice DETC were present and virtually all of them express Vdelta6.3. However, DETC were absent in TCR-delta(-/-) Vdelta6.3Tg mice, despite the fact that Vdelta6.3Tg gammadelta T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vdelta6.3Tg mice, a high proportion of in-frame Vdelta1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-delta (most probably Vdelta1) was required for the development of Vdelta6.3+ epidermal gammadelta T cells. Collectively our data demonstrate that TCR specificity is essential for the development of gammadelta T cells in the epidermis. Moreover, they show that the TCR-delta locus is not allelically excluded.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In contrast to mice from the majority of inbred strains, BALB mice develop aberrant Th2 responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of Interleukin 4, during the first 2 d of infection, by CD4+ T cells that express the Vbeta4-Valpha8 T cell receptors specific for a dominant I-A(d) restricted epitope of the LACK antigen from L. major. In contrast to this well established role of IL-4 in Th2 cell maturation, we have recently shown that, when limited to the initial period of activation of dendritic cells by L. major preceding T cell priming, IL-4 directs DCs to produce IL-12, promotes Th1 cell maturation and resistance to L. major in otherwise susceptible BALB/c mice. Thus, the antagonistic effects that IL-4 can have on Th cell development depend upon the nature of the cells (DCs or primed T cells) targeted for IL-4 signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.