82 resultados para Psp, protein solubility in pepsin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the development of new 'bedside' investigative methods, relatively abstract physiologic concepts such as energy cost of growth, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified in very low birthweight infants. 'Healthy' premature infants expend about 30% of their energy to cover the metabolic cost of growth. Stable isotope techniques using 15N-(or 13C)-labeled amino acids gave a new insight into this very high energy demanding process represented by the protein accretion in growing tissues. It has been demonstrated that the rate of protein synthesis (10-12 g/kg/day) greatly exceeds that necessary for net protein gain (2 g/kg/day). The postnatal growth and protein metabolism have different characteristics in 'healthy', 'sick' or 'intrauterine undernourished' very low birthweight infants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lassa virus (LASV) causing hemorrhagic Lassa fever in West Africa, Mopeia virus (MOPV) from East Africa, and lymphocytic choriomeningitis virus (LCMV) are the main representatives of the Old World arenaviruses. Little is known about how the components of the arenavirus replication machinery, i.e., the genome, nucleoprotein (NP), and L protein, interact. In addition, it is unknown whether these components can function across species boundaries. We established minireplicon systems for MOPV and LCMV in analogy to the existing LASV system and exchanged the components among the three systems. The functional and physical integrity of the resulting complexes was tested by reporter gene assay, Northern blotting, and coimmunoprecipitation studies. The minigenomes, NPs, and L proteins of LASV and MOPV could be exchanged without loss of function. LASV and MOPV L protein was also active in conjunction with LCMV NP, while the LCMV L protein required homologous NP for activity. Analysis of LASV/LCMV NP chimeras identified a single LCMV-specific NP residue (Ile-53) and the C terminus of NP (residues 340 to 558) as being essential for LCMV L protein function. The defect of LASV and MOPV NP in supporting transcriptional activity of LCMV L protein was not caused by a defect in physical NP-L protein interaction. In conclusion, components of the replication complex of Old World arenaviruses have the potential to functionally and physically interact across species boundaries. Residue 53 and the C-terminal domain of NP are important for function of L protein during genome replication and transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fasting-induced adipose factor (FIAF, ANGPTL4, PGAR, HFARP) was previously identified as a novel adipocytokine that was up-regulated by fasting, by peroxisome proliferator-activated receptor agonists, and by hypoxia. To further characterize FIAF, we studied regulation of FIAF mRNA and protein in liver and adipose cell lines as well as in human and mouse plasma. Expression of FIAF mRNA was up-regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARbeta/delta agonists in rat and human hepatoma cell lines and by PPARgamma and PPARbeta/delta agonists in mouse and human adipocytes. Transactivation, chromatin immunoprecipitation, and gel shift experiments identified a functional PPAR response element within intron 3 of the FIAF gene. At the protein level, in human and mouse blood plasma, FIAF was found to be present both as the native protein and in a truncated form. Differentiation of mouse 3T3-L1 adipocytes was associated with the production of truncated FIAF, whereas in human white adipose tissue and SGBS adipocytes, only native FIAF could be detected. Interestingly, truncated FIAF was produced by human liver. Treatment with fenofibrate, a potent PPARalpha agonist, markedly increased plasma levels of truncated FIAF, but not native FIAF, in humans. Levels of both truncated and native FIAF showed marked interindividual variation but were not associated with body mass index and were not influenced by prolonged semistarvation. Together, these data suggest that FIAF, similar to other adipocytokines such as adiponectin, may partially exert its function via a truncated form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of dietary protein on oxidized cholesterol-induced alterations in linoleic acid and cholesterol metabolism were studied in 4-wk-old male Sprague-Dawley rats, using casein and soybean protein as dietary protein sources. The rats were fed one of the two proteins in cholesterol-free, 0.3% cholesterol or 0.3% oxidized cholesterol mixture diets using a pair-feeding protocol for 3 wk. In the soybean protein-fed group, rats fed oxidized cholesterol did not have lower activity of liver microsomal delta6 desaturase, the rate-limiting enzyme in the metabolism of linoleic acid to arachidonic acid, compared with rats fed cholesterol-free diet, whereas in the casein-fed group the desaturase activity was significantly greater in rats fed oxidized cholesterol than in those fed cholesterol-free diet. This was in contrast to a significant reduction in liver microsomal delta6 desaturase activity by cholesterol, irrespective of protein source. In general, these changes were reflected in the desaturation indices of liver phospholipids. Furthermore, soybean protein significantly increased the fecal excretion of neutral and acidic steroids and tended to reduce (P = 0.082) the accumulation of oxidized cholesterols in the liver. Thus, soybean protein partly modified some of the undesirable effects of oxidized cholesterol through its hypocholesterolemic effect and possibly through the modulation of hepatic delta6 desaturase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under optimal non-physiological conditions of low concentrations and low temperatures, proteins may spontaneously fold to the native state, as all the information for folding lies in the amino acid sequence of the polypeptide. However, under conditions of stress or high protein crowding as inside cells, a polypeptide may misfold and enter an aggregation pathway resulting in the formation of misfolded conformers and fibrils, which can be toxic and lead to neurodegenerative illnesses, such as Alzheimer's, Parkinson's or Huntington's diseases and aging in general. To avert and revert protein misfolding and aggregation, cells have evolved a set of proteins called molecular chaperones. Here, I focussed on the human cytosolic chaperones Hsp70 (DnaK) and HspllO, and co-chaperone Hsp40 (DnaJ), and the chaperonin CCT (GroEL). The cytosolic molecular chaperones Hsp70s/Hspll0s and the chaperonins are highly upregulated in bacterial and human cells under different stresses and are involved both in the prevention and the reversion of protein misfolding and aggregation. Hsp70 works in collaboration with Hsp40 to reactivate misfolded or aggregated proteins in a strict ATP dependent manner. Chaperonins (CCT and GroEL) also unfold and reactivate stably misfolded proteins but we found that it needed to use the energy of ATP hydrolysis in order to evict over- sticky misfolded intermediates that inhibited the unfoldase catalytic sites. Ill In this study, we initially characterized a particular type of inactive misfolded monomeric luciferase and rhodanese species that were obtained by repeated cycles of freeze-thawing (FT). These stable misfolded monomeric conformers (FT-luciferase and FT-rhodanese) had exposed hydrophobic residues and were enriched with wrong ß-sheet structures (Chapter 2). Using FT-luciferase as substrate, we found that the Hsp70 orthologs, called HspllO (Sse in yeast), acted similarly to Hsp70 as were bona fide ATP- fuelled polypeptide unfoldases and was much more than a mere nucleotide exchange factor, as generally thought. Moreover, we found that HspllO collaborated with Hsp70 in the disaggregation of stable protein aggregates in which Hsp70 and HspllO acted as equal partners that synergistically combined their individual ATP-consuming polypeptide unfoldase activities to reactivate the misfolded/aggregated proteins (Chapter 3). Using FT-rhodanese as substrate, we found that chaperonins (GroEL and CCT) could catalytically reactivate misfolded rhodanese monomers in the absence of ATP. Also, our results suggested that encaging of an unfolding polypeptide inside the GroEL cavity under a GroES cap was not an obligatory step as generally thought (Chapter 4). Further, we investigated the role of Hsp40, a J-protein co-chaperone of Hsp70, in targeting misfolded polypeptides substrates onto Hsp70 for unfolding. We found that even a large excess of monomeric unfolded a-synuclein did not inhibit DnaJ, whereas, in contrast, stable misfolded a-synuclein oligomers strongly inhibited the DnaK-mediated chaperone reaction by way of sequestering the DnaJ co-chaperone. This work revealed that DnaJ could specifically distinguish, and bind potentially toxic stably aggregated species, such as soluble a-synuclein oligomers involved in Parkinson's disease, and with the help of DnaK and ATP convert them into from harmless natively unfolded a-synuclein monomers (chapter 5). Finally, our meta-analysis of microarray data of plant and animal tissues treated with various chemicals and abiotic stresses, revealed possible co-expressions between core chaperone machineries and their co-chaperone regulators. It clearly showed that protein misfolding in the cytosol elicits a different response, consisting of upregulating the synthesis mainly of cytosolic chaperones, from protein misfolding in the endoplasmic reticulum (ER) that elicited a typical unfolded protein response (UPR), consisting of upregulating the synthesis mainly of ER chaperones. We proposed that drugs that best mimicked heat or UPR stress at increasing the chaperone load in the cytoplasm or ER respectively, may prove effective at combating protein misfolding diseases and aging (Chapter 6).  - Dans les conditions optimales de basse concentration et de basse température, les protéines vont spontanément adopter un repliement natif car toutes les informations nécessaires se trouvent dans la séquence des acides aminés du polypeptide. En revanche, dans des conditions de stress ou de forte concentration des protéines comme à l'intérieur d'une cellule, un polypeptide peu mal se replier et entrer dans un processus d'agrégation conduisant à la formation de conformères et de fibrilles qui peuvent être toxiques et causer des maladies neurodégénératives comme la maladie d'Alzheimer, la maladie de Parkinson ou la chorée de Huntington. Afin d'empêcher ou de rectifier le mauvais repliement des protéines, les cellules ont développé des protéines appelées chaperonnes. Dans ce travail, je me suis intéressé aux chaperonnes cytosoliques Hsp70 (DnaK) et HspllO, la co-chaperones Hsp40 (DnaJ), le complexe CCT/TRiC et GroEL. Chez les bactéries et les humains, les chaperonnes cytosoliques Hsp70s/Hspl 10s et les « chaperonines» sont fortement activées par différentes conditions de stress et sont toutes impliquées dans la prévention et la correction du mauvais repliement des protéines et de leur agrégation. Hsp70 collabore avec Hsp40 pour réactiver les protéines agrégées ou mal repliées et leur action nécessite de 1ATP. Les chaperonines (GroEL) déplient et réactivent aussi les protéines mal repliées de façon stable mais nous avons trouvé qu'elles utilisent l'ATP pour libérer les intermédiaires collant et mal repliés du site catalytique de dépliage. Nous avons initialement caractérisé un type particulier de formes stables de luciférase et de rhodanese monomériques mal repliées obtenues après plusieurs cycles de congélation / décongélation répétés (FT). Ces monomères exposaient des résidus hydrophobiques et étaient plus riches en feuillets ß anormaux. Ils pouvaient cependant être réactivés par les chaperonnes Hsp70+Hsp40 (DnaK+DnaJ) et de l'ATP, ou par Hsp60 (GroEL) sans ATP (Chapitre 2). En utilisant la FT-Luciferase comme substrat nous avons trouvé que HspllO (un orthologue de Hsp70) était une authentique dépliase, dépendante strictement de l'ATP. De plus, nous avons trouvé que HspllO collaborait avec Hsp70 dans la désagrégation d'agrégats stables de protéines en combinant leurs activités dépliase consommatrice d'ATP (Chapitre 3). En utilisant la FT-rhodanese, nous avons trouvé que les chaperonines (GroEL et CCT) pouvaient réactiver catalytiquement des monomères mal repliés en absence d'ATP. Nos résultats suggérèrent également que la capture d'un polypeptide en cours de dépliement dans la cavité de GroEL et sous un couvercle du complexe GroES ne serait pas une étape obligatoire du mécanisme, comme il est communément accepté dans la littérature (Chapitre 4). De plus, nous avons étudié le rôle de Hsp40, une co-chaperones de Hsp70, dans l'adressage de substrats polypeptidiques mal repliés vers Hsp70. Ce travail a révélé que DnaJ pouvait différencier et lier des polypeptide mal repliés (toxiques), comme des oligomères d'a-synucléine dans la maladie de Parkinson, et clairement les différencier des monomères inoffensifs d'a-synucléine (Chapitre 5). Finalement une méta-analyse de données de microarrays de tissus végétaux et animaux traités avec différents stress chimiques et abiotiques a révélé une possible co-expression de la machinerie des chaperonnes et des régulateurs de co- chaperonne. Cette meta-analyse montre aussi clairement que le mauvais repliement des protéines dans le cytosol entraîne la synthèse de chaperonnes principalement cytosoliques alors que le mauvais repliement de protéines dans le réticulum endoplasmique (ER) entraine une réponse typique de dépliement (UPR) qui consiste principalement en la synthèse de chaperonnes localisées dans l'ER. Nous émettons l'hypothèse que les drogues qui reproduisent le mieux les stress de chaleur ou les stress UPR pourraient se montrer efficaces dans la lutte contre le mauvais repliement des protéines et le vieillissement (Chapitre 6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We and others have reported mutations in LONP1, a gene coding for a mitochondrial chaperone and protease, as the cause of the human CODAS (cerebral, ocular, dental, auricular and skeletal) syndrome (MIM 600373). Here, we delineate a similar but distinct condition that shares the epiphyseal, vertebral and ocular changes of CODAS but also included severe microtia, nasal hypoplasia, and other malformations, and for which we propose the name of EVEN-PLUS syndrome for epiphyseal, vertebral, ear, nose, plus associated findings. In three individuals from two families, no mutation in LONP1 was found; instead, we found biallelic mutations in HSPA9, the gene that codes for mHSP70/mortalin, another highly conserved mitochondrial chaperone protein essential in mitochondrial protein import, folding, and degradation. The functional relationship between LONP1 and HSPA9 in mitochondrial protein chaperoning and the overlapping phenotypes of CODAS and EVEN-PLUS delineate a family of "mitochondrial chaperonopathies" and point to an unexplored role of mitochondrial chaperones in human embryonic morphogenesis.