108 resultados para Protox inhibitors
Resumo:
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is considered an attractive therapeutic target in multiple inflammatory and autoimmune disorders. In addition to its known biologic activities, MIF can also function as a tautomerase. Several small molecules have been reported to be effective inhibitors of MIF tautomerase activity in vitro. Herein we employed a robust activity-based assay to identify different classes of novel inhibitors of the catalytic and biological activities of MIF. Several novel chemical classes of inhibitors of the catalytic activity of MIF with IC(50) values in the range of 0.2-15.5 microm were identified and validated. The interaction site and mechanism of action of these inhibitors were defined using structure-activity studies and a battery of biochemical and biophysical methods. MIF inhibitors emerging from these studies could be divided into three categories based on their mechanism of action: 1) molecules that covalently modify the catalytic site at the N-terminal proline residue, Pro(1); 2) a novel class of catalytic site inhibitors; and finally 3) molecules that disrupt the trimeric structure of MIF. Importantly, all inhibitors demonstrated total inhibition of MIF-mediated glucocorticoid overriding and AKT phosphorylation, whereas ebselen, a trimer-disrupting inhibitor, additionally acted as a potent hyperagonist in MIF-mediated chemotactic migration. The identification of biologically active compounds with known toxicity, pharmacokinetic properties, and biological activities in vivo should accelerate the development of clinically relevant MIF inhibitors. Furthermore, the diversity of chemical structures and mechanisms of action of our inhibitors makes them ideal mechanistic probes for elucidating the structure-function relationships of MIF and to further determine the role of the oligomerization state and catalytic activity of MIF in regulating the function(s) of MIF in health and disease.
Resumo:
Imatinib mesylate, a selective inhibitor of tyrosine kinases, has excellent efficacy in the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST). Inducing durable responses and achieving prolonged survival, it has become the standard of care for the treatment of these diseases. It has opened the way to the development of additional tyrosine kinase inhibitors (TKIs), including sunitinib, nilotinib, dasatinib and sorafenib, all indicated for the treatment of various haematological malignancies and solid tumours. TKIs are prescribed for prolonged periods and are often taken by patients with - notably cardiovascular - comorbidities. Hence TKIs are regularly co-administered with cardiovascular drugs, with a considerable risk of potentially harmful drug-drug interactions due to the large number of agents used in combination. However, this aspect has received limited attention so far, and a comprehensive review of the published data on this important topic has been lacking. We review here the available data and pharmacological mechanisms of interactions between commonly prescribed cardiovascular drugs and the TKIs marketed at present. Regular updating of the literature on this topic will be mandatory, as will the prospective reporting of unexpected clinical observations, given the fact that these drugs have been only recently marketed.
Resumo:
BACKGROUND: Whether nucleoside reverse transcriptase inhibitors increase the risk of myocardial infarction in HIV-infected individuals is unclear. Our aim was to explore whether exposure to such drugs was associated with an excess risk of myocardial infarction in a large, prospective observational cohort of HIV-infected patients. METHODS: We used Poisson regression models to quantify the relation between cumulative, recent (currently or within the preceding 6 months), and past use of zidovudine, didanosine, stavudine, lamivudine, and abacavir and development of myocardial infarction in 33 347 patients enrolled in the D:A:D study. We adjusted for cardiovascular risk factors that are unlikely to be affected by antiretroviral therapy, cohort, calendar year, and use of other antiretrovirals. FINDINGS: Over 157,912 person-years, 517 patients had a myocardial infarction. We found no associations between the rate of myocardial infarction and cumulative or recent use of zidovudine, stavudine, or lamivudine. By contrast, recent-but not cumulative-use of abacavir or didanosine was associated with an increased rate of myocardial infarction (compared with those with no recent use of the drugs, relative rate 1.90, 95% CI 1.47-2.45 [p=0.0001] with abacavir and 1.49, 1.14-1.95 [p=0.003] with didanosine); rates were not significantly increased in those who stopped these drugs more than 6 months previously compared with those who had never received these drugs. After adjustment for predicted 10-year risk of coronary heart disease, recent use of both didanosine and abacavir remained associated with increased rates of myocardial infarction (1.49, 1.14-1.95 [p=0.004] with didanosine; 1.89, 1.47-2.45 [p=0.0001] with abacavir). INTERPRETATION: There exists an increased risk of myocardial infarction in patients exposed to abacavir and didanosine within the preceding 6 months. The excess risk does not seem to be explained by underlying established cardiovascular risk factors and was not present beyond 6 months after drug cessation.
Resumo:
Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator of immune responses and therefore an important therapeutic target for the treatment of diseases that involve pathological immune escape, such as cancer. Here, we describe a robust and sensitive high-throughput screen (HTS) for IDO1 inhibitors using the Prestwick Chemical Library of 1200 FDA-approved drugs and the Maybridge HitFinder Collection of 14,000 small molecules. Of the 60 hits selected for follow-up studies, 14 displayed IC50 values below 20 μM under the secondary assay conditions, and 4 showed an activity in cellular tests. In view of the high attrition rate we used both experimental and computational techniques to identify and to characterize compounds inhibiting IDO1 through unspecific inhibition mechanisms such as chemical reactivity, redox cycling, or aggregation. One specific IDO1 inhibitor scaffold, the imidazole antifungal agents, was chosen for rational structure-based lead optimization, which led to more soluble and smaller compounds with micromolar activity.
Resumo:
Anti-TNF alpha are immunomodulatory treatments prescribed for some rheumatologic inflammatory diseases (ex: spondylarthropathy, rheumatoid polyarthritis). The randomised studies suggested that anti-TNF alpha therapy is associated with an overall risk of infectious diseases. The results of the observational studies are more reassuring. In this article, we will describe some results of theses studies and propose some practical recommendations in use of the anti-TNF alpha therapy.
Resumo:
BACKGROUND: Nucleoside reverse transcriptase inhibitors (NRTIs) are often administered in salvage therapy even if genotypic resistance tests (GRTs) indicate high-level resistance, but little is known about the benefit of these additional NRTIs. METHODS: The effect of <2 compared with 2 NRTIs on viral suppression (HIV-1 RNA < 50 copies/mL) at week 24 was studied in salvage patients receiving raltegravir. Intent-to-treat and per-protocol analyses were performed; last observation carried forward imputation was used to deal with missing information. Logistic regressions were weighted to create a pseudopopulation in which the probability of receiving <2 and 2 NRTIs was unrelated to baseline factors predicting treatment response. RESULTS: One-hundred thirty patients were included, of whom 58.5% (n = 76) received <2 NRTIs. NRTIs were often replaced by other drug classes. Patients with 2 NRTIs received less additional drug classes compared with patients with <2 NRTIs [median (IQR): 1 (1-2) compared with 2 (1-2), P Wilcoxon < 0.001]. The activity of non-NRTI treatment components was lower in the 2 NRTIs group compared with the <2 NRTIs group [median (IQR) genotypic sensitivity score: 2 (1.5-2.5) compared with 2.5 (2-3), P Wilcoxon < 0.001]. The administration of <2 NRTIs was associated with a worse viral suppression rate at week 24. The odds ratios were 0.34 (95% confidence interval: 0.13 to 0.89, P = 0.027) and 0.19 (95% confidence interval: 0.05 to 0.79, P = 0.023) when performing the last observation carried forward and the per-protocol approach, respectively. CONCLUSIONS: Our findings showed that partially active or inactive NRTIs contribute to treatment response, and thus the use of 2 NRTIs in salvage regimens that include raltegravir seems warranted.
Resumo:
Targeted angiostatic therapy receives major attention for the treatment of cancer and exudative age-related macular degeneration (AMD). Photodynamic therapy (PDT) has been used as an effective clinical approach for these diseases. As PDT can cause an angiogenic response in the treated tissue, combination of PDT with anti-angiogenic compounds should lead to improved therapy. This study was undertaken to test the clinically used small molecule kinase inhibitors Nexavar® (sorafenib), Tarceva® (erlotinib) and Sutent® (sunitinib) for this purpose, and to compare the results to the combination of Visudyne®-PDT with Avastin® (bevacizumab) treatment. When topically applied to the chicken chorioallantoic membrane at embryo development day (EDD) 7, a clear inhibition of blood vessel development was observed, with sorafenib being most efficient. To investigate the combination with phototherapy, Visudyne®-PDT was first applied on EDD11 to close all <100 μm vessels. Application of angiostatics after PDT resulted in a significant decrease in vessel regrowth in terms of reduced vessel density and number of branching points/mm(2) . As the 50% effective dose (ED50) for all compounds was approximately 10-fold lower, Sorafenib outperformed the other compounds. In vitro, all kinase inhibitors decreased the viability of human umbilical vein endothelial cells. Sunitinib convincingly inhibited the in vitro migration of endothelial cells. These results suggest the therapeutic potential of these compounds for application in combination with PDT in anti-cancer approaches, and possibly also in the treatment of other diseases where angiogenesis plays an important role.
Resumo:
BACKGROUND: Histone deacetylase inhibitors (HDACi) are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB) is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities. RESULTS: We show here that the HDACi Sodium Butyrate (NaB), suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA) strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and BimEL and the inactivation of the anti-apoptotic proteins XIAP, Bcl-xL, RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells. CONCLUSION: HDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells.
Resumo:
Pharmacologic agents that target protein products of oncogenes in tumors are playing an increasing clinical role in the treatment of cancer. Currently, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. Subsequently other genetic abnormalities with "driver" characteristics - implying transforming and tumor maintenance capabilities have been extensively reported in several small distinct subsets of NSCLC. Among these rare genetic changes, anaplastic lymphoma kinase (ALK) gene rearrangements, most often consisting in a chromosome 2 inversion leading to a fusion with the echinoderm microtubule-associated protein like 4 (EML4) gene, results in the abnormal expression and activation of this tyrosine kinase in the cytoplasm of cancer cells. This rearrangement occurs in 2-5% of NSCLC, predominantly in young (50 years or younger), never- or former-smokers with adenocarcinoma. This aberration most commonly occurs a independently of EGFR and KRAS gene mutations. A fluorescent in situ hybridization assay was approved by the US Food and Drug Administration (FDA) as the standard method for the detection of ALK gene rearrangement in clinical practice and is considered the gold standard. Crizotinib, a first-in-class dual ALK and c-MET inhibitor, has been shown to be particularly effective against ALK positive NSCLC, showing dramatic and prolonged responses with low toxicity, predominantly restricted to the gastro-intestinal and visual systems, and generally self-limiting or easily managed. However, resistance to crizotinib inevitably emerges. The molecular mechanisms of resistance are currently under investigation, as are therapeutic approaches including crizotinib-based combination therapy and novel agents such as Hsp90 inhibitors. This review aims to present the current knowledge on this fusion gene, the clinic-pathological profile of ALK rearranged NSCLC, and to review the existing literature on ALK inhibitors, focusing on their role in the treatment of NSCLC.
Resumo:
Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd2+, Hg2+ and Pb2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC(50) in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.
Resumo:
Many biologically active peptides are protected from general proteolytic degradation by evolutionary conserved prolines (Pro), due to conformational constraints imposed by the Pro residue. Thus the biological importance of prolyl-specific peptidases points to a high potential for drug discovery for this family of enzymes. Panels of inhibitors have been synthesized and their effects, determined in biological models, suggest the inhibition of families of enzymes with similar activities. Prolyl-specific aminodipeptidases include dipeptidyl-aminodipeptidase IV (DPP IV)/CD26, DPP8, DPP9 and fibroblast activation protease-alpha (FAP-alpha)/seprase, able to release X-Pro dipeptides from the N-terminus of peptides. DPP IV inhibitors are in clinical use for type 2 diabetes. In this review, the expression and the potential functions of prolyl-aminodipeptidases are reviewed in diseases, and the inhibitors developed for these enzymes are discussed, with a specific focus on inhibitors able to discriminate between DPP IV and fibroblast activation protease-alpha (FAPalpha)/seprase as potential leads for the treatment of fibrogenic diseases.
Resumo:
Several cancer treatments are shifting from traditional, time-limited, nonspecific cytotoxic chemotherapy cycles to continuous oral treatment with specific protein-targeted therapies. In this line, imatinib mesylate, a selective tyrosine kinases inhibitor (TKI), has excellent efficacy in the treatment of chronic myeloid leukemia. It has opened the way to the development of additional TKIs against chronic myeloid leukemia, including nilotinib and dasatinib. TKIs are prescribed for prolonged periods, often in patients with comorbidities. Therefore, they are regularly co-administered along with treatments at risk of drug-drug interactions. This aspect has been partially addressed so far, calling for a comprehensive review of the published data. We review here the available evidence and pharmacologic mechanisms of interactions between imatinib, dasatinib, and nilotinib and widely prescribed co-medications, including known inhibitors or inducers of cytochromes P450 or drug transporters. Information is mostly available for imatinib mesylate, well introduced in clinical practice. Several pharmacokinetic aspects yet remain insufficiently investigated for these drugs. Regular updates will be mandatory and so is the prospective reporting of unexpected clinical observations.
Resumo:
Malaria, a disease of worldwide significance, is responsible for over one million deaths annually. The liver-stage of Plasmodium's life cycle is the first, obligatory, but clinically silent step in malaria infection. The P. falciparum type II fatty acid biosynthesis pathway (PfFAS-II) has been found to be essential for complete liver-stage development and has been regarded as a potential antimalarial target for the development of drugs for malaria prophylaxis and liver-stage eradication. In this paper, new coumarin-based triclosan analogues are reported and their biological profile is explored in terms of inhibitory potency against enzymes of the PfFAS-II pathway. Among the tested compounds, 7 and 8 showed the highest inhibitory potency against Pf enoyl-ACP-reductase (PfFabI), followed by 15 and 3. Finally, we determined the crystal structures of compounds 7 and 11 in complex with PfFabI to identify their mode of binding and to confirm outcomes of docking simulations.
Resumo:
Studies on the cellular disposition of targeted anticancer tyrosine kinases inhibitors (TKIs) have mostly focused on imatinib while the functional importance of P-glycoprotein (Pgp) the gene product of MDR1 remains controversial for more recent TKIs. By using RNA interference-mediated knockdown of MDR1, we have investigated and compared the specific functional consequence of Pgp on the cellular disposition of the major clinically in use TKIs imatinib, dasatinib, nilotinib, sunitinib and sorafenib. siRNA-mediated knockdown in K562/Dox cell lines provides a unique opportunity to dissect the specific contribution of Pgp to TKIs intracellular disposition. In these conditions, abrogating specifically Pgp-mediated efflux in vitro revealed the remarkable and statistically significant cellular accumulation of imatinib (difference in cellular levels between Pgp-expressing and silenced cells, at high and low incubation concentration, respectively: 6.1 and 6.6), dasatinib (4.9 and 5.6), sunitinib (3.7 and 7.3) and sorafenib (1.2 and 1.4), confirming that these TKIs are all substrates of Pgp. By contrast, no statistically significant difference in cellular disposition of nilotinib was observed as a result of MDR1 expression silencing (differences: 1.1 and 1.5) indicating that differential expression and/or function of Pgp is unlikely to affect nilotinib cellular disposition. This study enables for the first time a direct estimation of the specific contribution of one transporter among the various efflux and influx carriers involved in the cellular trafficking of these major TKIs in vitro. Knowledge on the distinct functional consequence of Pgp expression for these various TKIs cellular distribution is necessary to better appreciate the efficacy, toxicity, and potential drug-drug interactions of TKIs with other classes of therapeutic agents, at the systemic, tissular and cellular levels.