87 resultados para Polyphenol oxidase
Resumo:
Treatment of bean cuttings with 4-chlororesorcinol (4-CR), known to increase the number of roots and extend their distribution, prevented the accumulation of free indol-3-yl-acetic acid (IAA) in the hypocotyls within 24 h after cutting preparation. In mung bean there was no change in the distribution (upper half vs. 1 ower half of the hypocotyl) of IAA within the hypocotyl as a result of the treatment. In bean cuttings the treatment with 4-CR prevented the accumulation of IAA in the bottom of the cutting. Oxidation of IAA as a measure of IAA oxidase activity in bean was enhanced appreciably by 4-chlororesorcinol. The level of abscisic acid in mung bean, on the other hand, remained 3-4 fold higher than in the control, yet still about 50% lower than the zero time level. In untreated mung bean cuttings the activity of peroxidase increased after cutting preparation. In contrast, the activity of peroxidase in 4-Cr-treated cuttings was consistently lower. In order to relate to the effect of exogenously applied auxin the level of peroxidase was measured also in indol-3-yl-butyric acid-treated cuttings. The overall peroxidase activity in IBA-treated cuttings was not affected. However, when assaying for the different isozymes the drop in peroxidase activity was most evident in the inducible basic isoperoxidases both in 4-CR and IBA treatments. It appears that the exposure to 4-CR exerts an effect that is similar to that of exogenously applied auxin, affecting the activity of basic peroxidases and enhancing the oxidation of endogenous IAA, thus allowing the organization of the primordia.
Resumo:
The first step in the synthesis of the bicyclic rings of D-biotin is mediated by 8-amino-7-oxononanoate (AON) synthase, which catalyzes the decarboxylative condensation of l-alanine and pimelate thioester. We found that the Aspergillus nidulans AON synthase, encoded by the bioF gene, is a peroxisomal enzyme with a type 1 peroxisomal targeting sequence (PTS1). Localization of AON to the peroxisome was essential for biotin synthesis because expression of a cytosolic AON variant or deletion of pexE, encoding the PTS1 receptor, rendered A. nidulans a biotin auxotroph. AON synthases with PTS1 are found throughout the fungal kingdom, in ascomycetes, basidiomycetes, and members of basal fungal lineages but not in representatives of the Saccharomyces species complex, including Saccharomyces cerevisiae. A. nidulans mutants defective in the peroxisomal acyl-CoA oxidase AoxA or the multifunctional protein FoxA showed a strong decrease in colonial growth rate in biotin-deficient medium, whereas partial growth recovery occurred with pimelic acid supplementation. These results indicate that pimeloyl-CoA is the in vivo substrate of AON synthase and that it is generated in the peroxisome via the β-oxidation cycle in A. nidulans and probably in a broad range of fungi. However, the β-oxidation cycle is not essential for biotin synthesis in S. cerevisiae or Escherichia coli. These results suggest that alternative pathways for synthesis of the pimelate intermediate exist in bacteria and eukaryotes and that Saccharomyces species use a pathway different from that used by the majority of fungi.
Resumo:
RESUME Les bétalaïnes sont des pigments chromo-alcaloïdes violets et jaunes présents dans les plantes appartenant à l'ordre des Caryophyllales et dans les champignons des genres Amanita et Hygrocybe. Leur courte voie de biosynthèse est élucidée chimiquement depuis de nombreuses années, mais les enzymes impliquées dans cette biosynthèse chez les plantes ne sont toujours pas caractérisées. L'enzyme de la DOPA-dioxygénase d' Amanita muscaria a été identifiée (Girod et Zryd, 1991a), mais de nombreuses tentatives d'isolation d'un homologue chez les plantes ont échoué. Afin d'isoler les gènes spécifiques des bétalaïnes chez les plantes, nous avons construit des banques soustraites d'ADNc à partir d'ARN total de pétales immatures de Portulaca grandiflora (Pg) de génotypes jaunes et blancs, respectivement violets et blancs. Les clones couleur- spécifiques ont été détectés en premier par analyse Northem du RNA de pétales blancs et colorés. Les candidats positifs ont alors été soumis à une analyse de transcription au niveau des tiges colorées, vertes et des feuilles, afin d'établir leur expression spécifique. Deux ARNs messagers complets ont une expression corrélée avec l'accumulation des bétalaïnes dans les tissus. Le premier de ces clones, A.16, code pour une oxydase de l'acyl-Coenzyme A (ACX) putative, mais le domaine de liaison du FAD essentiel pour l'activité d'ACX est absent. Toutes nos tentatives pour démontrer sa fonction ont échoué. Le rôle de cette protéine dans la voie de synthèse des bétalaïnes reste inconnu. Le deuxième de ces clones spécifique aux bétalaïnes, L.6 (isolé par Zaiko, 2000), a été renommé DODA en raison de son homologie avec le domaine LigB (pfam02900) d'une 4,5-dioxygénase extradiol bactérienne. DODA a été identifié in silico comme une dioxygénase extradiol en raison de la conservation stricte, au niveau de sa séquence peptidique, des résidus catalytiques de LigB et de ceux liant le cofacteur fer. Une analyse de transfert Southem a montré que ce gène est unique dans Pg. L'expression transitoire de DODA par transformation biolistique dans des pétales blancs de Pg a produit des taches violettes ou jaunes dans des cellules transformées. Une analyse HPLC de ces taches a démontré leur identité avec les bétalaïnes présentes naturellement dans les pétales violets et jaunes de Pg, confirmant ainsi la complémentation par le gène Pg DODA de l'allèle récessif cc présent dans les pétales blancs de Pg. Des homologues de DODA (DOPA-dioxygénase) ont été identifiés dans de nombreuses espèces de plantes, y compris dans celles sans bétalaïne. L'alignement de ces homologues a permis l'identification d'un motif spécifique aux bétalaïnes à côté d'une histidine catalytique conservée. Ce motif [H-P-(S,A)-(N,D)-x-T-P] remplace le motif [H-N-L-R] conservé dans les plantes sans bétalaïne et le motif [H-N-L-x] présent dans tous les homologues bactériens et archaebactériens. Une modélisation tridimensionnelle préliminaire du site actif de Pg DODA et de son homologue dans la mousse Physcomitrella patens a montré l'importance de ce motif spécifique aux bétalaïnes pour l'accessibilité du substrat au site actif. L'analyse phylogénétique de DODA a confirmé l'évolution séparée de cette protéine chez les plantes à bétalaïnes par comparaison avec celle des plantes sans bétalaïne. Nous avons donc conclu que les bétalaïnes sont apparues par modification de l'affinité pour un substrat d'enzymes similaires à DODA, chez un ancêtre unique des Caryophyllales qui a perdu toute capacité de biosynthèse des anthocyanes. Finalement, Pg DODA n'a aucune similarité avec la protéine DODA d' Amanita muscaria, bien que celle-ci complémente aussi la pigmentation des pétales blancs de Pg. La biosynthèse des bétalaïnes est un exemple remarquable de convergence évolutive biochimique indépendante entre espèces de règnes différents. ABSTRACT Betalains are violet and yellow chromo-alkaloid pigments present in plants belonging to the order Caryophyllales and also in the fungal genera Amanita and Hygrocybe. Their short biosynthetic pathway is chemically well understood since many years, but enzymes involved in the plant pathway are still uncharacterized. The DOPA-dioxygenase from Amanita muscaria was identified (Girod and Zryd, 1991a), but numerous attempts to identify a plant homologue to the corresponding gene, failed. In order to isolate betalain-specific genes in plants, subtractive cDNA libraries were built with total RNA from white and yellow and respectively, violet immature petals from Portulaca grandiflora (Pg) genotypes. Colour-specific clones were first detected by Northern blot analysis using RNA from white and coloured petals. Positive candidates were submitted to further transcription analysis in coloured, green stems and leaves in order to assess their specific expression. Two full-length mRNAs showed a correlated expression with betalain accumulation in tissues. One of them, A.16, encodes a putative acyl-Coenzyme A oxidase (ACX), but missing the FAD binding domain essential for the ACX activity. Thus, all attempts to demonstrate its function failed. The role of this protein in the betalain biosynthesis pathway, if any, is still unknown. The second betalain-specific mRNA, L.6 (isolated by Zaiko, 2000) shows a homology with a LigB domain (pfam02900) from a bacterial extradiol 4,5-dioxygenase. It was then renamed DODA (DOPA-dioxygenase). DODA was identified in silico as a highly conserved extradiol dioxygenase due to the strict conservation of its peptidic sequence with LigB catalytic residues and iron-binding cofactor residues. Southern blot analysis showed that this gene is a single copy-gene in Pg. Transient expression of DODA protein through biolistic transformation of Pg white petals produced violet or yellow spots in individual cells. HPLC analysis of these spots showed an identity with betalain pigments present naturally in yellow and violet Pg petals, thus confirming the complementation of the recessive cc allele present in Pg white petals by Pg DODA gene. DODA homologues were identified in numerous plant species including those without betalain. Alignment of these homologues allowed the identification of a betalain-specific pattern beside a highly conserved catalytic histidine. This [H-P-(S,A)-(N,D)-x-T-P] pattern replaces a [H-N-L-R] pattern strictly conserved in non-betalain plants and a [H-N-L-x] pattern present in all bacterial and archaebacterial homologues. Preliminary three-dimensional modeling of the active site of Pg DODA and its Physcomitrella patens moss homologue revealed the importance of this betalain-specific pattern for the substrate accessibility to the DODA active site. DODA phylogenetic analysis confirmed the separate evolution of this protein in betalain-producing plants. We conclude that betalain pigments appeared in a unique ancestor of the Caryophyllales order in which anthocyanin biosynthetic pathway was impaired, by a modification of enzymes of the DODA family for substrate affinity. The Pg DODA protein has no sequence similarity with Amanita muscaria DODA, despite the fact that they both complement Pg white petals for their pigmentation. Betalain biosynthesis is an interesting example of independent biochemical evolutionary convergence between species from different kingdoms.
Resumo:
Résumé pour large public Unité de Biochimie et Psychopharmacologie Clinique, Centre de neurosciences Psychiatrique, Département de Psychiatrie Adulte, Faculté de Biologie et de Médecine, Université de Lausanne Lors de la prise d'un médicament, celui-ci va passer par différentes étapes que sont l'absorption, la distribution, le métabolisme et enfin l'élimination. Ces quatre étapes sont regroupées sous le nom de pharmacocinétique. A noter que ces quatre paramètres sont dynamiques et en constante évolution. Durant cette thèse, nous avons investigué différents aspects de la pharmacocinétique, tout d'abord par une revue de la littérature sur la glycoprotéine-P (Pgp). Récemment découverte, cette protéine de membrane est située aux endroits stratégiques de l'organisme comme la barrière hématoencéphalée, le placenta ou les intestins où elle influencera l'entrée de différentes substances, en particulier les médicaments. La Pgp serait impliquée dans les phénomènes de résistances aux agents thérapeutiques en oncologie. La Pgp influence donc l'absorption des médicaments, et son impact en clinique, en termes d'efficacité de traitement et de toxicité prend chaque jour plus d'importance. Ensuite nous avons mis au point une méthode d'analyse quantitative d'un antidépresseur d'une nouvelle génération : la mirtazapine (Remeron®). La nouveauté réside dans la façon dont la mirtazapine interagit avec les neurotransmetteurs impliqués dans la dépression que sont la sérotonine et la noradrénaline. Cette méthode utilise la chromatographie liquide pour séparer la mirtazapine de ses principaux métabolites dans le sang. La spectrométrie de masse est utilisée pour les détecter et les quantifier. Les métabolites sont des substances issues de réactions chimiques entre la substance mère, la mirtazapine, et généralement des enzymes hépatiques, dans le but de rendre cette substance plus soluble en vue de son élimination. Cette méthode permet de quantifier la mirtazapine et ses métabolites dans le sang de patients traités et de déterminer la variation des taux plasmatiques chez ces patients. Puis nous avons étudié le métabolisme d'un autre antidépresseur, le citalopram, qui a un métabolisme complexe. Le citalopram est un racémate, c'est-à-dire qu'il existe sous forme de deux entités chimiques (R-(-) et S-(+) citalopram) qui ont le même nombre d'éléments mais arrangés différemment dans l'espace. La voie métabolique cérébrale du citalopram est sous le contrôle d'une enzyme, la monoamine oxydase (MAO), conduisant à une forme acide du citalopram (l'acide propionique du citalopram). La MAO existe sous deux formes : MAO-A et MAO-B. Nous avons utilisé des souris déficientes d'un gène, celui de la MAO-A, pour mieux en comprendre le métabolisme en les comparants à des souris sauvages (sans déficience de ce gène). Nous avons utilisé le citalopram et deux de ses métabolites (le déméthylcitaloprarn et le didéméthyícitalopram) comme substrats pour tester la formation in vitro de l'acide propionique du citalopram. Nos résultats montrent que la MAO-A favorise la formation de l'entité R-(-) et présente une plus grande affinité pour le citalopram, tandis que la MAO-B métabolise préférentiellement l'entité S-(+) et a une plus grande affinité pour les deux métabolites déméthylés. De plus, la déficience en MAO-A est partiellement compensée parla MAO-B chez les souris déficientes du gène de la MAO-A. Enfin, nous avons étudié une deuxième voie métabolique du citalopram qui s'est avérée toxique chez le chien Beagle. Celle-ci est catalysée par une autre famille d'enzymes, les cytochromes P-450, et mène aux métabolites déméthylés et didéméthylés du citalopram. Nous avons utilisé des tissus hépatiques de chiens Beagle. Plusieurs cytochromes P-450 sont impliqués dans le métabolisme du citalopram menant à sa forme déméthylée, ceci tant chez l'homme que chez le chien. Par contre, dans le métabolisme de la forme déméthylée menant à 1a forme didéméthylée, un seul cytochrome P-450 serait impliqué chez l'Homme, tandis qu'ils seraient plusieurs chez le chien. L'activité enzymatique produisant la forme didéméthylée est beaucoup plus importante chez le chien comparé à l'homme. Cette observation soutien l'hypothèse que des taux élevés de la forme didéméthylée participent à la toxicité spécifique du citalopram chez le chien. Nous pouvons conclure que plusieurs famille d'enzymes sont impliquées tant au niveau cérébral qu'hépatique dans la métabolisation de médicaments psychotropes. Sachant que les enzymes peuvent être stimulées ou inhibées, il importe de pouvoir suivre au plus prés les taux plasmatiques des différents psychotropes et de leurs métabolites. Résumé Unité de Biochimie et Psychopharmacologie Clinique, Centre de neurosciences Psychiatrique, Département de Psychiatrie Adulte, Faculté de Biologie et de Médecine, Université de Lausanne La plupart des médicaments subissent une transformation enzymatique dans l'organisme. Les substances issues de cette métabolisation ne sont pas toujours dotées d'une activité pharmacologique. Il s'est avéré par conséquent indispensable de suivre les taux plasmatiques d'une substance et de ses métabolites et d'établir ou non l'existence d'une relation avec l'effet clinique observé. Ce concept nommé « therapeutic drag monitoring » (TDM) est particulièrement utile en psychiatrie ou un manque de compliance des patients est fréquemment observé. Les médicaments psychotropes ont un métabolisme principalement hépatique (cytochromes P-450) et parfois cérébral (monoamines oxydases), comme pour le citalopram par exemple. Une méthode stéréosélective de chromatographie liquide couplée à la spectrométrie de masse a été développée pour analyser les énantiomères R-(-) et S-(+) d'un antidépresseur agissant sur les récepteurs noradrénergiques et sérotoninergiques, la mirtazapine et de ses métabolites déméthylmirtazapine et 8-hydroxymirtazapine. Les données préliminaires obtenues dans les plasmas dosés suggèrent que les concentrations de R-(-)-mirtazapine sont plus élevées que celles de S-(+)-mirtazapine, à l'exception des patients qui auraient comme co-médication des inhibiteurs du CYP2D6, telle que la fluoxétine ou la thioridazine. Il y a une enantiosélectivité du métabolisme de la mirtazapine. En particulier pour la 8-hydroxymirtazapine qui est glucuroconjuguée et pour laquelle le ratio S/R varie considérablement. Cette méthode analytique présente l'avantage d'être utilisable pour le dosage stéréosélectif de la mirtazapine et de ses métabolites dans le plasma de patients ayant d'autres substances en co-médication. La glycoprotéine P fonctionne comme une pompe transmembranaire transportant les xénobiotiques depuis le milieu intracellulaire vers le milieu extracellulaire. Son induction et son inhibition, bien que moins étudiées que pour les cytochromes P-450, ont des implications cliniques importantes en termes d'efficacité de traitement et de toxicité. Cette glycoprotéine P a fait l'objet d'une recherche bibliographique. Nous avons étudié le métabolisme du citalopram, un antidépresseur de la classe des inhibiteurs spécifiques de la recapture de la sérotonine chez la souris et chez le chien. Cette substance subit un métabolisme complexe. La voie de métabolisation conduisant à la formation de l'acide propionique du citalopram, catalysée par les monoamines oxydases, a été étudiée in vitro dans les mitochondries cérébrales chez la souris déficiente du gène de la MAO-A (Tg8). La monoamine oxydase A catalyse la formation de l'énantiomère R-(-) et présente une plus grande affinité pour les amines tertiaires, tandis que la monoamine oxydase B favorise la formation de la forme S-(+) et a une affinité plus marquée pour les amines secondaires et primaires. L'étude du citalopram chez la souris Tg8 adulte a montré que la monoamine oxydase B compense la déficience de la monoamine oxydase A chez ces souris génétiquement modifiées. Une autre voie de métabolisation du citalopram conduisant à la formation de didéméthylcitalopram, catalysée par les cytochromes P-450, a été étudiée in vitro dans des microsomes hépatiques de chiens Beagle. Nos études ont montré que les cinétiques de N-déméthylation du citalopram sont biphasiques chez le chien. Les orthologues canins impliqués dans la première N-déméthylation semblent être identiques aux cytochromes P-450 humains. Par contre, dans la deuxième Ndéméthylation, un seul cytochrome P-450 semble être impliqué chez l'homme (CYP2D6), tandis qu'on retrouve jusqu'à cinq orthologues chez le chien. Le CYP2D15, orthologue canin du CYP2D6, est majoritairement impliqué. De plus, l'activité enzymatique, reflétée par les clairances intrinsèques, dans la première N-déméthylation est jusqu'à 45 fois plus élevée chez le chien comparé à l'homme. Ces différentes observations soutiennent l'hypothèse que des taux élevés de didéméthylcitalopram sont responsables de la toxicité du citalopram chez le chien. Nous pouvons conclure que plusieurs famille d'enzymes sont impliquées tant au niveau cérébral qu'hépatique dans la métabolisation de médicaments psychotropes. Sachant -que les enzymes peuvent être induits ou inhibés, il importe de pouvoir suivre au plus près les taux plasmatiques des différents psychotropes et de leurs métabolites. Summary Most of the drugs are metabolized in the organism. Substances issued from this metabolic activity do not always show a pharmacological activity. Therefore, it is necessary to monitor plasmatic levels of drugs and their metabolites, and establish the relationship with the clinical effect. This concept named therapeutic drug monitoring is very useful in psychiatry where lack of compliance is commonly observed. Antidepressants are mainly metabolized in the liver (cytochrome P-450) and sometimes in the brain (monoamine oxidase) like the citalopram, for exemple. A LC-MS method was developed, which allows the simultaneous analysis of R-(-) and S-(+) enantiomers of mirtazapine, an antidepressant acting specifically on noradrenergic and serotonergic receptors, and its metabolites demethylmirtazapine and 8-hydroxymirtazapine in plasma of mirtazapine treated patients. Preliminary data obtained suggested that R-(-) mirtazapine concentrations were higher than those of S-(+) mirtazapine, except in patients comedicated with CYP2D6 inhibitors such as fluoxetine or thioridazine. There is an enantioselectivity in the metabolism of mirtazapine. In particular for the 8-hydroxymirtazapine, which is glucuroconjugated and S/R ratio varies considerably. Therefore this method seems to be suitable for the stereoselective assay of mirtazapine and its metabolites in plasma of patients comedicated with mirtazapine and other drugs for routine and research purposes. P-glycoprotein is working as an efflux transporter of xenobiotics from intracellular to extracellular environment. Its induction or inhibition, although less studied than cytochrome P-450, has huge clinical implications in terms of treatment efficacy and toxicity. An extensive literature search on P-glycoprotein was performed as part of this thesis. The study of citalopram metabolism, an antidepressant belonging to the class of selective serotonin reuptake inhibitors. This substance undergoes a complex metabolism. First metabolization route leading to citalopram propionic acid, catalyzed by monoamine oxidase was studied in vitro in mice brain mitochondria. Monoamine oxidase A catalyzed the formation of R-(-) enantiomer and showed greater affinity for tertiary amines, whereas monoamine oxidase B triggered the formation of S-(+) enantiomer and demonstrated higher affinity for primary and secondary amines. citalopram evaluation in adult Tg8 mice showed that monoamine oxidase B compensated monoamine oxidase A deficiency in those genetically transformed mice. The second metabolization route of citalopram leading to didemethylcitalopram and catalyzed by cytochrome P-450 was studied in vitro in Beagle dog's livers. Our results showed that citalopram N-demethylation kinetics are biphasic in dogs. Canine orthologs involved in the first N-demethylation seemed to be identical to human cytochromes P-450. However, in the second N-demethylation only one cytochrome P-450 seemed to be involved in human (CYP2D6), whereas up to five canine orthologs were found in dogs. CYP2D15 canine ortholog of CYP2D6 was mainly involved. In addition, enzymatic activity reflected by intrinsic clearance in the first N-demethylation was up to 45 fold higher in dogs compared to humans. Those observations support the assumption that elevated rates of didemethylcitalopram are responsible for citalopram toxicity in dogs. We can conclude that several enzymes groups are involved in the brain, as well as in the liver, in antidepressant metabolization. Knowing that enzymes may be induced or inhibited, it makes sense to closely monitor plasmatic levels of antidepressants and their metabolites.
Resumo:
Summary: Decrease in glutathione (GSH) levels was observed in cerebrospinal fluid, prefrontal cortex and post-mortem striatum of schizophrenia patients. Evidences suggest a defect in GSH synthesis at the levels of the rate-limiting synthesizing enzyme, glutamate cysteine ligase (GCL). Indeed, polymorphisms in the gene of the modifier subunit of GCL (GCLM) was shown to be associated with the disease in three different populations, GCLM gene expression is decreaséd in fibroblasts from patients and the increase in GCL activity induced by an oxidative stress is lower in patients' fibroblasts compared to controls. GSH being a major antioxydant and redox regulator, its presence is of high importance for protecting cells against oxidative stress. The aim of the present work was to use various substances to increase GSH levels by diverse strategies. Since the synthesizing enzyme GCL is defective, bypassing this enzyme was the first strategy we used. GSH ethyl ester (GSHEE), a membrane permeable analog of GSH, succeeded in replenishing GSH levels in cultured neurons and astrocytes previously depleted in GSH by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GCL. GSHEE also abolished dopamine-induced decrease of NMDA-mediated calcium response observed in BSO-treated neurons. y-Glutamylcysteine ethyl ester (GCSE), a membrane permeable analog of the product of GCL, increased GSH levels only in astrocytes. The second strategy was to boost the defective enzyme GCL. While quercetin (flavonoid) could increase GSH levels only in astrocytes, curcumin (polyphenol) and tertbutylhydroquinone (quinone) were successful in both neurons and astrocytes, via an increase in the gene expression of the two subunits of GCL and, consequently, an increase in the activity of the enzyme. However, FK506, an immunosupressant, was unefficient. Treating astrocytes from GCLM KO mice showed that the modulatory subunit is necessary for the action of the substances. Finally, since cysteine is the limiting precursor in the synthesis of GSH, we hypothesized that we could increase GSH levels by providing more of this precursor. N-acetyl-cysteine (NAC), a cysteine donor, was administered to schizophrenia patients, using adouble-blind and cross-over protocol. NAC significantly improved the mismatch negativity (MMN), a component of the auditory evoked potentials, thought to reflect selective current flowing through open, unblocked NMDA channels. Considering that NMDA function is reduced when GSH levels are low, increasing these levels with NAC could improve NMDA function as reflected by the improvement in the generation of the MMN. Résumé: Les taux de glutathion (GSH) dans le liquide céphalo-rachidien, le cortex préfrontal ainsi que le striatum post-mortem de patients schizophrènes, sont diminués. L'enzyme limitante dans la synthèse du GSH, la glutamyl-cysteine ligase (GCL), est défectueuse. En effet, des polymorphismes dans le gène de la sous-unité modulatrice de GCL (GCLM) sont associés à la maladie, l'expression du gène GCLM est diminuée dans les fibroblastes de patients et, lors d'un stress oxidative, l'augmentation de l'activité de GCL est plus faible chez les patients que chez les contrôles. Le GSH étant un important antioxydant et régulateur du status redox, sa présence est primordiale afin de protéger les cellules contre les stress oxydatifs. Au cours du présent travail, une variété de substances ont été utilisées dans le but d'augmenter les taux de GSH. Passer outre l'enzyme de synthèse GCL qui est défectueuse fut la première stratégie utilisée. L'éthylester de GSH (GSHEE), un analogue du GSH qui pénètre la membrane cellulaire, a augmenté les taux de GSH dans des neurones et des astrocytes déficitaires en GSH dû au L-buthionine-(S,R)-sulfoximine (BSO), un inhibiteur du GCL. Dans ces neurones, le GSHEE a aussi aboli la diminution de la réponse NMDA, induite parla dopamine. L'éthyl-ester de y-glutamylcysteine (GCEE), un analogue du produit de la GCL qui pénètre la membrane cellulaire, a augmenté les taux de GSH seulement dans les astrocytes. La seconde stratégie était d'augmenter l'activité de l'enzyme GCL. Tandis que la quercétine (flavonoïde) n'a pu augmenter les taux de GSH que dans les astrocytes, la curcumin (polyphénol) et le tert-butylhydroquinone (quinone) furent efficaces dans les deux types de cellules, via une augmentation de l'expression des gènes des deux sous-unités de GCL et de l'activité de l'enzyme. Le FK506 (immunosupresseur) n' a démontré aucune efficacité. Traiter des astrocytes provenant de souris GCLM KO a permis d'observer que la sous-unité modulatoire est nécessaire à l'action des substances. Enfin, puisque la cysteine est le substrat limitant dans la synthèse du GSH, fournir plus de ce présurseur pourrait augmenter les taux de GSH. Nacétyl-cystéine (NAC), un donneur de cystéine, a été administrée à des schizophrènes, lors d'une étude en double-aveugle et cross-over. NAC a amélioré le mismatch negativity (MMN), un composant des potentials évoqués auditifs, qui reflète le courant circulant via les canaux NMDA. Puisque la fonctionnalité des R-NMDA est diminuée lorsque les taux de GSH sont bas, augmenter ces taux avec NAC pourrait améliorer la fonction des R-NMDA, réflété par une augmentation de l'amplitude du MMN.
Resumo:
Activation of the NLRP3 inflammasome by microbial ligands or tissue damage requires intracellular generation of reactive oxygen species (ROS). We present evidence that macrophage secretion of IL1β upon stimulation with ATP, crystals or LPS is mediated by a rapid increase in the activity of xanthine oxidase (XO), the oxidized form of xanthine dehydrogenase, resulting in the formation of uric acid as well as ROS. We show that XO-derived ROS, but not uric acid, is the trigger for IL1β release and that XO blockade results in impaired IL1β and caspase1 secretion. XO is localized to both cytoplasmic and mitochondrial compartments and acts upstream to the PI3K-AKT signalling pathway that results in mitochondrial ROS generation. This pathway represents a mechanism for regulating NLRP3 inflammasome activation that may have therapeutic implications in inflammatory diseases.
Resumo:
Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. IMPORTANCE: Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts' fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis.
Resumo:
We found previously that the nitric oxide donor DEA/NO enhanced lipid peroxidation, DNA fragmentation, and cytotoxicity in human bronchial epithelial cells (BEAS-2B) when they were cultured in LHC-8 medium containing the superoxide-generating system hypoxanthine/xanthine oxidase (HX/XO). We have now discovered that DEA/NO's prooxidant action can be reversed by raising the L-tyrosine concentration from 30 to 400 microM. DEA/NO also protected the cells when they were cultured in Dulbecco's Modified Eagle's Medium (DMEM), whose standard concentration of L-tyrosine is 400 microM. Similar trends were seen with the colon adenoma cell line CaCo-2. Since HPLC analysis of cell-free DMEM or LHC-8 containing 400 microM L-tyrosine, DEA/NO, and HX/XO revealed no evidence of L-tyrosine nitration, our data suggest the existence of an as-yet uncharacterized mechanism by which L-tyrosine can influence the biochemical and toxicological effects of reactive nitrogen species.
Resumo:
Exposing the human bronchial epithelial cell line BEAS-2B to the nitric oxide (NO) donor sodium 1-(N,N-diethylamino)diazen-1-ium-1, 2-diolate (DEA/NO) at an initial concentration of 0.6 mM while generating superoxide ion at the rate of 1 microM/min with the hypoxanthine/xanthine oxidase (HX/XO) system induced C:G-->T:A transition mutations in codon 248 of the p53 gene. This pattern of mutagenicity was not seen by 'fish-restriction fragment length polymorphism/polymerase chain reaction' (fish-RFLP/PCR) on exposure to DEA/NO alone, however, exposure to HX/XO led to various mutations, suggesting that co-generation of NO and superoxide was responsible for inducing the observed point mutation. DEA/NO potentiated the ability of HX/XO to induce lipid peroxidation as well as DNA single- and double-strand breaks under these conditions, while 0.6 mM DEA/NO in the absence of HX/XO had no significant effect on these parameters. The results show that a point mutation seen at high frequency in certain common human tumors can be induced by simultaneous exposure to reactive oxygen species and a NO source.
Resumo:
Here, we report the culture and characterization of an alphaproteobacterium of the order Rhizobiales, isolated from the gut of the honey bee Apis mellifera. Strain PEB0122T shares >95 % 16S rRNA gene sequence similarity with species of the genus Bartonella, a group of mammalian pathogens transmitted by bloodsucking arthropods. Phylogenetic analyses showed that PEB0122T and related strains from the honey bee gut form a sister clade of the genus Bartonella. Optimal growth of strain PEB0122T was obtained on solid media supplemented with defibrinated sheep blood under microaerophilic conditions at 35-37 °C, which is consistent with the cultural characteristics of other species of the genus Bartonella. Reduced growth of strain PEB0122T also occurred under aerobic conditions. The rod-shaped cells of strain PEB0122T had a mean length of 1.2-1.8 μm and revealed hairy surface structures. Strain PEB0122T was positive for catalase, cytochrome c oxidase, urease and nitrate reductase. The fatty acid composition was comparable to those of other species of the genus Bartonella, with palmitic acid (C16 : 0) and isomers of 18- and 19-carbon chains being the most abundant. The genomic DNA G+C content of PEB0122T was determined to be about 45.5 mol%. The high 16S rRNA gene sequence similarity with species of Bartonella and its close phylogenetic position suggest that strain PEB0122T represents a novel species within the genus Bartonella, for which we propose the name Bartonella apis sp. nov. The type strain is PEB0122T ( = NCIMB 14961T = DSM 29779T).