198 resultados para Plant pathogen defense


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defense mechanism is a key concept in the psychoanalytic psychopathology of borderline personality disorder (BPD). Theoretical and empirical elaborations on this question are briefly reviewed and discussed with respect to process assessment of defense mechanisms; we put forward observer-rater methodology as an accurate means of assessing unconscious in-session processes. A sample of 25 patients presenting with BPD were interviewed, as were subjects from a matched control group without psychiatric symptoms (n = 25), using a psychodynamic interview paradigm. These interviews were transcribed and rated using the Defense Mechanisms Rating Scales. The results indicate that, compared to controls, patients with BPD used higher percentages of a action, borderline, disavowal, narcissistic, and hysteric defenses, along with lower levels of mature and obsessional defenses. Overall defensive functioning was significantly lower in the patients with BPD, compared to controls. Narcissistic defenses were related with symptom level. These results are discussed in light of previous studies on defensive functioning of BPD and the literature on psychoanalytic psychopathology. These results have several important clinical implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM OF THE PAPER: Arouse the reflection with a fiction having a scientific appearance, presenting a late and unexpected complication of the universal inactivation of pathogens. CONCLUSION: Such a fiction story opens the debate on a series of fundamental questions that could be addressed during the paradigm shift that is expected by introducing universal pathogen inactivation of blood products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane trafficking in a developmental context, and in diverse, specialized cell types. These include defense responses to pathogens, regulation of transporter accumulation in plant nutrition or polar auxin transport in development. In all of these cases a central role is played by the endosomal membrane system, which, however, is the most divergent and ill-defined aspect of plant cell compartmentation. We have designed a new vector series, and have generated a large number of stably transformed plants expressing membrane protein fusions to spectrally distinct, fluorescent tags. We selected lines with distinct subcellular localization patterns, and stable, non-toxic expression. We demonstrate the power of this multicolor 'Wave' marker set for rapid, combinatorial analysis of plant cell membrane compartments, both in live-imaging and immunoelectron microscopy. Among other findings, our systematic co-localization analysis revealed that a class of plant Rab1-homologs has a much more extended localization than was previously assumed, and also localizes to trans-Golgi/endosomal compartments. Constructs that can be transformed into any genetic background or species, as well as seeds from transgenic Arabidopsis plants, will be freely available, and will promote rapid progress in diverse areas of plant cell biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several studies reporting cell death (CD) in lower eukaryotes and in the human protozoan parasite Leishmania, proteolytic activity was revealed using pan-caspase substrates or inhibitors such as carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). However, most of the lower eukaryotes do not encode caspase(s) but MCA, which differs from caspase(s) in its substrate specificity and cannot be accountable for the recognition of Z-VAD-FMK. In the present study, we were interested in identifying which enzyme was capturing the Z-VAD substrate. We show that heat shock (HS) induces Leishmania CD and leads to the intracellular binding of Z-VAD-FMK. We excluded binding and inhibition of Z-VAD-FMK to Leishmania major metacaspase (LmjMCA), and identified cysteine proteinase C (LmjCPC), a cathepsin B-like (CPC) enzyme, as the Z-VAD-FMK binding enzyme. We confirmed the specific interaction of Z-VAD-FMK with CPC by showing that Z-VAD binding is absent in a Leishmania mexicana strain in which the cpc gene was deleted. We also show that parasites exposed to various stress conditions release CPC into a soluble fraction. Finally, we confirmed the role of CPC in Leishmania CD by showing that, when exposed to the oxidizing agent hydrogen peroxide (H(2)O(2)), cpc knockout parasites survived better than wild-type parasites (WT). In conclusion, this study identified CPC as the substrate of Z-VAD-FMK in Leishmania and as a potential additional executioner protease in the CD cascade of Leishmania and possibly in other lower eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenological events - defined points in the life cycle of a plant or animal - have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. Here, we evaluated evidence for phylogenetic conservatism - the tendency for closely related species to share similar ecological and biological attributes - in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing 4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses.Synthesis. Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species-rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species-rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non-neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect-responsive genes after challenge with caterpillars, suggesting that egg-derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA-deficient mutant sid2-1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross-talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg-induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract :The majority of land plants form the symbiosis with arbuscular mycorrhizal fungi (AMF). The AM symbiosis has existed for hundreds of millions of years but little or no specificity seems to have co- evolved between the partners and only about 200 morphospecies of AMF are known. The fungi supply the plants most notably with phosphate in exchange for carbohydrates. The fungi improve plant growth, protect them against pathogens and herbivores and the symbiosis plays a key role in ecosystem productivity and plant diversity. The fungi are coenocytic, grow clonally and no sexual stage in their life cycle is known. For these reasons, they are presumed ancient asexuals. Evidence suggests that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. Consequently, the nucleotype content of new clonal offspring could potentially be altered by segregation of nuclei at spore formation and by genetic exchange between different AMF. Given the importance of AMF, it is surprising that remarkably little is known about the genetics and genomics of the fungi.The main goal of this thesis was to investigate the combined effects of plant species differences and of genetic exchange and segregation in AMF on the symbiosis. This work showed that single spore progeny can receive a different assortment of nucleotypes compared to their parent and compared to other single spore progeny. This is the first direct evidence that segregation occurs in AMF. We then showed that both genetic exchange and segregation can lead to new progeny that differentially alter plant growth compared to their parents. We also found that genetic exchange and segregation can lead to different development of the fungus during the establishment of the symbiosis. Finally, we found that a shift of host species can differentially alter the phenotypes and genotypes of AMF progeny obtained by genetic exchange and segregation compared to their parents.Overall, this study confirms the multigenomic state of the AMF Glomus intraradices because our findings are possible only if the fungus contains genetically different nuclei. We demonstrated the importance of the processes of genetic exchange and segregation to produce, in a very short time span, new progeny with novel symbiotic effects. Moreover, our results suggest that different host species could affect the fate of different nucleotypes following genetic exchange and segregation in AMF, and can potentially contribute to the maintenance of genetic diversity within AMF individuals. This work brings new insights into understanding how plants and fungi have coevolved and how the genetic diversity in AMF can be maintained. We recommend that the intra-ir1dividual AMF diversity and these processes should be considered in future research on this symbiosis.Résumé :La majorité des plantes terrestres forment des symbioses avec les champignons endomycorhiziens arbusculaires (CEA). Cette symbiose existe depuis plusieurs centaines de millions d'années mais peu ou pas de spécificité semble avoir co-évoluée entre les partenaires et seulement 200 morpho-espèces de CEA sont connues. Le champignon fournit surtout aux plantes du phosphate en échange de carbohydrates. Le champignon augmente la croissance des plantes, les protège contre des pathogènes et herbivores et la symbiose joue un rôle clé dans la productivité des écosystèmes et de la diversité des plantes. Les CEA sont coenocytiques, se reproduisent clonalement et aucune étape sexuée n'est connue dans leur cycle de vie. Pour ces raisons, ils sont présumés comme anciens asexués. Des preuves suggèrent que les CEA ont des populations de nucleotypes différents coexistant dans un cytoplasme commun. Par conséquent, le contenu en nucleotype des nouveaux descendants clonaux pourrait être altéré par la ségrégation des noyaux lors de la fonnation des spores et par l'échange génétique entre différents CEA. Etant donné l'importance des CEA, il est surprenant que si peu soit connu sur la génétique et la génomique du champignon.Le principal but de cette thèse a été d'étudier les effets combinés de différentes espèces de plantes et des mécanismes d'échange génétique et de ségrégation chez les CEA sur la symbiose. Ce travail a montré que chaque nouvelle spore produite pouvait recevoir un assortiment différent de noyaux comparé au parent ou comparé à d'autres nouvelles spores. Ceci est la première preuve directe que la ségrégation peut se produire chez les CEA. Nous avons ensuite montré qu'à la fois l'échange génétique et la ségrégation pouvaient mener à de nouveaux descendants qui altèrent différemment la croissance des plantes, comparé à leurs parents. Nous avons également trouvé que l'échange génétique et la ségrégation pouvaient entraîner des développements différents du champignon pendant l'établissement de la symbiose. Pour finir, nous avons trouvé qu'un changement d'espèce de l'hôte pouvait altérer différemment les phénotypes et génotypes des descendants issus d'échange génétique et de ségrégation, comparé à leurs parents.Globalement, cette étude confirme l'état multigénomique du CEA Glumus intraradices car nous résultats sont possibles seulement si le champignon possède des noyaux génétiquement différents. Nous avons démontrés l'importance des mécanismes d'échange génétique et de ségrégation pour produire en très peu de temps de nouveaux descendants ayant des effets symbiotiques nouveaux. De plus, nos résultats suggèrent que différentes espèces de plantes peuvent agir sur le devenir des nucleotypes après l'échange génétique et la ségrégation chez les CEA, et pourraient contribuer à la maintenance de la diversité génétique au sein d'un même CEA. Ce travail apporte des éléments nouveaux pour comprendre comment les plantes et les champignons ont coévolué et comment la diversité génétique chez les CEA peut être maintenue. Nous recommandons de considérer la diversité génétique intra-individuelle des CEA et ces mécanismes lors de futures recherches sur cette symbiose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co-occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low-resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co-exist with males, hermaphrodites also tend to enhance their relative male allocation under low-resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co-occurring males.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1(-/-) mice are viable, fertile and show no altered hematopoietic compartment. In CD4(+) T cell- and dextran sodium sulfate-induced models of colitis, Trem1(-/-) mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1(-/-) mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1(-/-) mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1(-/-) mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1(+/+) controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RsmA family of RNA-binding proteins are global post-transcriptional regulators that mediate extensive changes in gene expression in bacteria. They bind to, and affect the translation rate of target mRNAs, a function that is further modulated by one or more, small, untranslated competitive regulatory RNAs. To gain new insights into the nature of this protein/RNA interaction, we used X-ray crystallography to solve the structure of the Yersinia enterocolitica RsmA homologue. RsmA consists of a dimeric beta barrel from which two alpha helices are projected. From structure-based alignments of the RsmA protein family from diverse bacteria, we identified key amino acid residues likely to be involved in RNA-binding. Site-specific mutagenesis revealed that arginine at position 44, located at the N terminus of the alpha helix is essential for biological activity in vivo and RNA-binding in vitro. Mutation of this site affects swarming motility, exoenzyme and secondary metabolite production in the human pathogen Pseudomonas aeruginosa, carbon metabolism in Escherichia coli, and hydrogen cyanide production in the plant beneficial strain Pseudomonas fluorescens CHA0. R44A mutants are also unable to interact with the small untranslated RNA, RsmZ. Thus, although possessing a motif similar to the KH domain of some eukaryotic RNA-binding proteins, RsmA differs substantially and incorporates a novel class of RNA-binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : Les vertébrés ont recours au système immunitaire inné et adaptatif pour combattre les pathogènes. La découverte des récepteurs Toll, il y a dix ans, a fortement augmenté l'intérêt porté à l'immunité innée. Depuis lors, des récepteurs intracellulaires tels que les membres de la famille RIG-like helicase (RLHs) et NOD-like receptor (NLRs) ont été décrits pour leur rôle dans la détection des pathogènes. L'interleukine-1 beta (IL-1β) est une cytokine pro-inflammatoire qui est synthétisée sous forme de précurseur, la proIL-1β. La proIL-1β requiert d'être clivée par la caspase-1 pour devenir active. La caspase-1 est elle-même activée par un complexe appelé inflammasome qui peut être formé par divers membres de la famille NLR. Plusieurs inflammasomes ont été décrits tels que le NALP3 inflammasome ou l'IPAF inflammasome. Dans cette étude nous avons identifié la co-chaperone SGT1 et la chaperone HSP90 comme partenaires d'interaction de NALP3. Ces deux protéines sont bien connues chez les plantes pour leurs rôles dans la régulation des gènes de résistance (gène R) qui sont structurellement apparentés à la famille NLR. Nous avons pu montrer que SGT1 et HSP90 jouent un rôle similaire dans la régulation de NALP3 et des protéines R. En effet, nous avons démontré que les deux protéines sont nécessaires pour l'activité du NALP3 inflammasome. De plus, la HSP90 est également requise pour la stabilité de NALP3. En se basant sur ces observations, nous avons proposé un modèle dans lequel SGT1 et HSP90 maintiennent NALP3 inactif mais prêt à percevoir un ligand activateur qui initierait la cascade inflammatoire. Nous avons également montré une interaction entre SGT1 et HSP90 avec plusieurs NLRs. Cette observation suggère qu'un mécanisme similaire pourrait être impliqué dans la régulation des membres de la famille des NLRs. Ces dernières années, plusieurs PAMPs mais également des DAMPs ont été identifiés comme activateurs du NALP3 inflammasome. Dans la seconde partie de cette étude, nous avons identifié la réponse au stress du réticulum endoplasmique (RE) comme nouvel activateur du NALP3 inflammasome. Cette réponse est initiée lors de l'accumulation dans le réticulum endoplasmique de protéines ayant une mauvaise conformation ce qui conduit, en autre, à l'arrêt de la synthèse de nouvelles protéines ainsi qu'une augmentation de la dégradation des protéines. Les mécanismes par lesquels la réponse du réticulum endoplasmique induit l'activation du NALP3 inflammasome doivent encore être déterminés. Summary : Vertebrates rely on the adaptive and the innate immune systems to fight pathogens. Awarness of the importance of the innate system increased with the identification of Toll-like receptors a decade ago. Since then, intracellular receptors such as the RIG-like helicase (RLH) and the NOD-like receptor (NLR) families have been described for their role in the recognition of microbes. Interleukin- 1ß (IL-1ß) is a key mediator of inflammation. This proinflammatory cytokine is synthesised as an inactive precursor that requires processing by caspase-1 to become active. Caspase-1 is, itself, activated in a complex termed the inflammasome that can be formed by members of the NLR family. Various inflammasome complexes have been described such as the IPAF and the NALP3 inflammasome. In this study, we have identified the co-chaperone SGT1 and the chaperone HSP90 as interacting partners of NALP3. SGT1 and HSP90 are both known for their role in the activity of plant resistance proteins (R proteins) which are structurally related to the NLR family. We have shown that HSP90 and SGT1 play a similar role in the regulation of NALP3 and in the regulation of plant R proteins. Indeed, we demonstrated that both HSP90 and SGT1 are essential for the activity of the NALP3 inflammasome complex. In addition, HSP90 is required for the stability of NALP3. Based on these observations, we have proposed a model in which SGT1 and HSP90 maintain NALP3 in an inactive but signaling-competent state, ready to receive an activating ligand that induces the inflammatory cascade. An interaction between several NLR members, SGTI and HSP90 was also shown, suggesting that similar mechanisms could be involved in the regulation of other NLRs. Several pathogen-associated molecular patterns (PAMPs) but also danger associated molecular patterns (DAMPs) have been identified as NALP3 activators. In the second part of this study, we have identified the ER stress response as a new NALP3 activator. The ER stress response is activated upon the accumulation of unfolded protein in the endoplasmic reticulum and results in a block in protein synthesis and increased protein degradation. The mechanisms of ER stress-mediated NALP3 activation remain to be determined.