80 resultados para Optimization software
Resumo:
The advent of multiparametric MRI has made it possible to change the way in which prostate biopsy is done, allowing to direct biopsies to suspicious lesions rather than randomly. The subject of this review relates to a computer-assisted strategy, the MRI/US fusion software-based targeted biopsy, and to its performance compared to the other sampling methods. Different devices with different methods to register MR images to live TRUS are currently in use to allow software-based targeted biopsy. Main clinical indications of MRI/US fusion software-based targeted biopsy are re-biopsy in men with persistent suspicious of prostate cancer after first negative standard biopsy and the follow-up of patients under active surveillance. Some studies have compared MRI/US fusion software-based targeted versus standard biopsy. In men at risk with MRI-suspicious lesion, targeted biopsy consistently detects more men with clinically significant disease as compared to standard biopsy; some studies have also shown decreased detection of insignificant disease. Only two studies directly compared MRI/US fusion software-based targeted biopsy with MRI/US fusion visual targeted biopsy, and the diagnostic ability seems to be in favor of the software approach. To date, no study comparing software-based targeted biopsy against in-bore MRI biopsy is available. The new software-based targeted approach seems to have the characteristics to be added in the standard pathway for achieving accurate risk stratification. Once reproducibility and cost-effectiveness will be verified, the actual issue will be to determine whether MRI/TRUS fusion software-based targeted biopsy represents anadd-on test or a replacement to standard TRUS biopsy.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
Mapping the microstructure properties of the local tissues in the brain is crucial to understand any pathological condition from a biological perspective. Most of the existing techniques to estimate the microstructure of the white matter assume a single axon orientation whereas numerous regions of the brain actually present a fiber-crossing configuration. The purpose of the present study is to extend a recent convex optimization framework to recover microstructure parameters in regions with multiple fibers.