163 resultados para NERVE BLOCKADE
Resumo:
We have shown that a local administration of thyroid hormones (T3) at the level of transected rat sciatic nerve induced a significant increase in the number of regenerated axons. To address the question of whether local administration of T3 rescues the axotomized sensory neurons from death, in the present study we estimated the total number of surviving neurons per dorsal root ganglion (DRG) in three experimental group animals. Forty-five days following rat sciatic nerve transection, the lumbar (L4 and L5) DRG were removed from PBS-control, T3-treated as well as from unoperated rats, and serial sections (1 microm) were cut. The physical dissector method was used to estimate the total number of sensory neurons in the DRGs. Our results revealed that in PBS-control rats transection of sciatic nerve leads to a significant (P < 0.001) decrease in the mean number of sensory neurons (8743.8 +/- 748.6) compared with the number of neurons in nontransected ganglion (mean 13,293.7 +/- 1368.4). However, administration of T3 immediately after sciatic nerve transection rescues a great number of axotomized neurons so that their mean neuron number (12,045.8 +/- 929.8) is not significantly different from the mean number of neurons in the nontransected ganglion. In addition, the volume of ganglia showed a similar tendency. These results suggest that T3 rescues a high number of axotomized sensory neurons from death and allows these cells to grow new axons. We believe that the relative preservation of neurons is important in considering future therapeutic approaches of human peripheral nerve lesion and sensory neuropathy.
Effect of ganglion blockade with pentolinium on circulating neuropeptide Y levels in conscious rats.
Resumo:
The vasoconstrictor peptide, neuropeptide Y (NPY), is present in perivascular noradrenergic neurons of all mammals studied and may be important in the regulation of blood pressure. High plasma levels of NPY have been measured in the rat. To investigate partially the source and factors controlling the release of the circulating peptide, the effect of pentolinium tartrate administration has been studied in conscious rats. Pentolinium given as a bolus (5 mg/kg) followed by an infusion of a further 5 mg/kg/30 min produced a highly significant reduction in blood pressure of more than 40 mm Hg, when compared to either basal values or control animals treated with saline. Pentolinium treatment resulted in significantly lower plasma neuropeptide Y levels (31.0 +/- 6.7 fmol/ml) compared with those of control animals (78.6 +/- 8.2 fmol/ml). Circulating catecholamines were also significantly reduced in those animals receiving pentolinium. These results are compatible with circulating NPY arising from the sympathetic nervous system, with release being controlled by the mechanisms already established for catecholamines.
Resumo:
Haemangioblastomas are rarely seen in the suprasellar region, arising from the optic apparatus or pituitary stalk, mimicking meningiomas on the preoperative MRI scan. They may be suspected in the presence of large flow voids and the absence of a dural tail. Intraoperatively, the extreme vascularity and compressibility of the tumour with no dural attachment should alert the surgeon to the diagnosis. A complete resection with preservation of vision may be successfully attempted because of the well-demarcated tumour-nerve interface.
Resumo:
INTRODUCTION: Functional muscle recovery after peripheral nerve injury is far from optimal, partly due to atrophy of the muscle arising from prolonged denervation. We hypothesized that injecting regenerative cells into denervated muscle would reduce this atrophy. METHODS: A rat sciatic nerve lesion was performed, and Schwann cells or adipose-derived stem cells, untreated or induced to a "Schwann-cell-like" phenotype (dASC), were injected into the gastrocnemius muscle. Nerves were either repaired immediately or capped to prevent muscle reinnervation. One month later, functionality was measured using a walking track test, and muscle atrophy was assessed by examining muscle weight and histology. RESULTS: Schwann cells and dASC groups showed significantly better scores on functional tests when compared with injections of growth medium alone. Muscle weight and histology were also significantly improved in these groups. CONCLUSION: Cell injections may reduce muscle atrophy and could benefit nerve injury patients.
Resumo:
BACKGROUND: Heerfordt syndrome is rare and is characterized by fever, uveitis, parotid gland enlargement, and facial nerve palsy. We hereby present a case of Heerfordt syndrome with unilateral facial nerve palsy as a presentation of sarcoidosis. HISTORY AND SIGNS: A 29-year-old male patient from Sri Lanka presented with eye redness OU, blurred vision OD, fever, headache, night sweat, fatigue, and weight loss (5 kg over 1 month). Examination revealed mild anterior uveitis OU, mild vitritis OD, fundus whitish lesions OU, left otalgia, taste disorders, bilateral parotid gland enlargement, and left facial nerve palsy. Work-up for infection or tumour was negative. Chest computed tomography and transbronchial lymph node biopsy set the diagnosis of sarcoidosis. THERAPY AND OUTCOME: The patient recovered completely within 2 months under therapy with prednisone and azathioprine. One year after onset of treatment, no recurrence was noted. CONCLUSIONS: Heerfordt syndrome is a rare manifestation of neurosarcoidosis and has to be included in the differential diagnosis of facial nerve palsy.
Resumo:
While the morphological and electrophysiological changes underlying diabetic peripheral neuropathy (DPN) are relatively well described, the involved molecular mechanisms remain poorly understood. In this study, we investigated whether phenotypic changes associated with early DPN are correlated with transcriptional alterations in the neuronal (dorsal root ganglia [DRG]) or the glial (endoneurium) compartments of the peripheral nerve. We used Ins2(Akita/+) mice to study transcriptional changes underlying the onset of DPN in type 1 diabetes mellitus (DM). Weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Ins2(Akita/+) and control mice during the first three months of life in order to determine the onset of DPN. Based on this phenotypic characterization, we performed gene expression profiling using sciatic nerve endoneurium and DRG isolated from pre-symptomatic and early symptomatic Ins2(Akita/+) mice and sex-matched littermate controls. Our phenotypic analysis of Ins2(Akita/+) mice revealed that DPN, as measured by reduced MNCV, is detectable in affected animals already one week after the onset of hyperglycemia. Surprisingly, the onset of DPN was not associated with any major persistent changes in gene expression profiles in either sciatic nerve endoneurium or DRG. Our data thus demonstrated that the transcriptional programs in both endoneurial and neuronal compartments of the peripheral nerve are relatively resistant to the onset of hyperglycemia and hypoinsulinemia suggesting that either minor transcriptional alterations or changes on the proteomic level are responsible for the functional deficits associated with the onset of DPN in type 1 DM.
Resumo:
BACKGROUND: The purpose of the optic nerve sheath diameter (ONSD) research group project is to establish an individual patient-level database from high quality studies of ONSD ultrasonography for the detection of raised intracranial pressure (ICP), and to perform a systematic review and an individual patient data meta-analysis (IPDMA), which will provide a cutoff value to help physicians making decisions and encourage further research. Previous meta-analyses were able to assess the diagnostic accuracy of ONSD ultrasonography in detecting raised ICP but failed to determine a precise cutoff value. Thus, the ONSD research group was founded to synthesize data from several recent studies on the subject and to provide evidence on the diagnostic accuracy of ONSD ultrasonography in detecting raised ICP. METHODS: This IPDMA will be conducted in different phases. First, we will systematically search for eligible studies. To be eligible, studies must have compared ONSD ultrasonography to invasive intracranial devices, the current reference standard for diagnosing raised ICP. Subsequently, we will assess the quality of studies included based on the QUADAS-2 tool, and then collect and validate individual patient data. The objectives of the primary analyses will be to assess the diagnostic accuracy of ONSD ultrasonography and to determine a precise cutoff value for detecting raised ICP. Secondly, we will construct a logistic regression model to assess whether patient and study characteristics influence diagnostic accuracy. DISCUSSION: We believe that this IPD MA will provide the most reliable basis for the assessment of diagnostic accuracy of ONSD ultrasonography for detecting raised ICP and to provide a cutoff value. We also hope that the creation of the ONSD research group will encourage further study. TRIAL REGISTRATION: PROSPERO registration number: CRD42012003072.
Resumo:
The acute renal tubular effects of two pharmacologically distinct angiotensin II receptor antagonists have been evaluated in normotensive volunteers on various salt diets. In the first study, the renal response to a single oral dose of losartan (100 mg) was assessed in subjects on a low (50 mmol Na/d) and on a high (200 mmol Na/d) salt intake. In a second protocol, the renal effects of 50 mg irbesartan were investigated in subjects receiving a 100 mmol Na/d diet. Both angiotensin II antagonists induced a significant increase in urinary sodium excretion. With losartan, a modest, transient increase in urinary potassium and a significant increase in uric acid excretion were found. In contrast, no change in potassium and uric acid excretions were observed with irbesartan, suggesting that the effects of losartan on potassium and uric acid are due to the intrinsic pharmacologic properties of losartan rather than to the specific blockade of renal angiotensin II receptors. Assessment of segmental sodium reabsorption using lithium as a marker of proximal tubular reabsorption demonstrated a decreased distal reabsorption of sodium with both antagonists. A direct proximal tubular natriuretic effect of the angiotensin II antagonist could be demonstrated only with irbesartan. This apparent discrepancy allowed us to reveal the importance of acute water loading as a possible confounding factor in renal studies. The results of the present analysis show that acute water loading per se may enhance renal sodium excretion and hence modify the level of activity of the renin-angiotensin system expected from a given sodium diet. Since acute water loading is a common practice in clinical renal studies, this confounding factor should be taken into account when investigating the renal effects of vasoactive systems.
Resumo:
We investigated the short-term and sustained hormonal and renal effects of angiotensin II (Ang II) receptor blockade in normotensive healthy volunteers. Twenty-four subjects maintained on a fixed sodium diet were randomized to receive for 8 days a placebo or 10 or 50 mg doses of the Ang II antagonist irbesartan (SR 47436, BMS 186295) according to a double-blind, parallel group design. Plasma renin activity, plasma immunoreactive Ang II and aldosterone levels, blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 8 hours after the first and eighth administration of each dose of irbesartan or placebo. Ang II receptor blockade with irbesartan induced a dose-dependent compensatory increase in plasma renin activity and plasma angiotensin levels and a significant decrease in plasma aldosterone levels. The compensatory rise in plasma renin activity and Ang II levels was more pronounced on day 8, reflecting a long duration of the blocking effect of irbesartan. Irbesartan induced small changes in blood pressure and did not significantly modify renal blood flow and glomerular filtration rate. However, a significant decrease in filtration fraction was observed during receptor blockade on days 1 and 8. The tubular effects of irbesartan were characterized by a dose-dependent increase in sodium and chloride excretions. Interestingly, the cumulative natriuretic response to Ang II receptor blockade was similar on days 1 and 8, suggesting that in these subjects, renal Ang II receptors are not blocked over 24 hours during repeated administration even though this antagonist has a long duration of action (t1/2 of 15 to 17 hours).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7±2.7% and 55.0±3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9±1.9% to 33.5±0.7% (p<0.01) and the total Nedd4-2 protein to 44%±0.13% of its basal level (p<0.01, n=4 animals in each group, mean±SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr(-/-)) were exposed to OVX or sham operation (n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr(-/-) animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr(-/-) animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.
Resumo:
A population of undifferentiated cells with neuronal potentialities were revealed in rat sciatic nerve. Explant cultures of sciatic nerve were prepared from newborn or early postnatal rat. Cultures were growth in F14 medium supplemented with 10% of fetal calf serum, incubated in a humidified 3% CO2, 97% air atmosphere. Within 2 weeks, refractile cells exhibiting the morphology of neurons were observed in all examined cultures. These cells had ovoid or multipolar refractile cells bodies with extended cytoplasmic processes. The neuronal nature of these cells was confirmed by their immunostaining with specific neuronal markers: neurofilament triplets, neuron-specific enolase, peripherin, microtubule-associated proteins, and brain spectrin. This neuronal population displayed various phenotypes. The CO2 concentration in the incubator plays an important role, since the number of differentiated neurons was lower in cultures incubated in 5% CO2. Since the sciatic nerve is devoid of nerve cell bodies in vivo, we concluded that early postnatal sciatic nerve contains crest cells with neuronal potentialities differentiating into neurons in response to the culture's environmental cues.
Resumo:
OBJECTIVE: To determine the pattern of extraocular muscle (EOM) paresis in incomplete vasculopathic third nerve palsies (3NP) that have normal pupillary function. METHODS: A retrospective study in a private practice and academic neuro-ophthalmic practice. Patients diagnosed with vasculopathic 3NP within 4 weeks of symptom onset were identified. The chart of each patient was reviewed to determine pupillary function and the pattern and degree of EOM and levator palpebrae paresis at the time of presentation. RESULTS: Of 55 patients with vasculopathic 3NP, 42 (76%) had normal pupillary function. Of these 42, 23 (55%) demonstrated an incomplete EOM palsy, defined as partially reduced ductions affecting all third nerve-innervated EOMs and levator (diffuse pattern) or partially reduced ductions that involved only some third nerve-innervated EOMs and levator (focal pattern). Twenty (87%) of these 23 patients showed a diffuse pattern of paresis; only three (13%) showed a focal pattern of paresis, one that affected only the superior rectus and levator muscles (superior division weakness). CONCLUSIONS: Based on our series, most patients with EOM/levator involvement in pupil-sparing, incomplete 3NP of vasculopathic origin have a diffuse pattern of paresis. In contrast, our review of the literature suggests that pupil-sparing 3NP of aneurysmal origin usually have a focal pattern of paresis. We propose that distinguishing these two patterns of EOM paresis may be helpful in differentiating between vasculopathic and aneurysmal 3NP. Future studies will be needed to confirm the clinical utility of this hypothesis.
Resumo:
The spared nerve injury (SNI) model mimics human neuropathic pain related to peripheral nerve injury and is based upon an invasive but simple surgical procedure. Since its first description in 2000, it has displayed a remarkable development. It produces a robust, reliable and long-lasting neuropathic pain-like behaviour (allodynia and hyperalgesia) as well as the possibility of studying both injured and non-injured neuronal populations in the same spinal ganglion. Besides, variants of the SNI model have been developed in rats, mice and neonatal/young rodents, resulting in several possible angles of analysis. Therefore, the purpose of this chapter is to provide a detailed guidance regarding the SNI model and its variants, highlighting its surgical and behavioural testing specificities.
Resumo:
BACKGROUND: Non-steroidal anti-inflammatory drugs are known to promote sodium retention and to blunt the blood pressure lowering effects of several classes of antihypertensive agents including beta-blockers, diuretics and angiotensin converting enzyme (ACE) inhibitors. The purpose of the present study was to investigate the acute and sustained effects of indomethacin on the renal response to the angiotensin II receptor antagonist valsartan and to the ACE inhibitor enalapril. METHODS: Twenty normotensive subjects maintained on fixed sodium intake (100 mmol sodium/day) were randomized to receive for one week: valsartan 80 mg o.d., enalapril 20 mg o.d., valsartan 80 mg o.d. + indomethacin 50 mg bid and enalapril 20 mg o.d. + indomethacin 50 mg bid. This single-blind study was designed as a parallel (valsartan vs. enalapril) and cross-over trial (valsartan or enalapril vs. valsartan + indomethacin or enalapril + indomethacin). Renal hemodynamics and urinary electrolyte excretion were measured for six hours after the first and seventh administration of each treatment regimen. RESULTS: The results show that valsartan and enalapril have comparable renal effects characterized by no change in glomerular filtration rate and significant increases in renal plasma flow and sodium excretion. The valsartan- and enalapril-induced renal vasodilation is not significantly blunted by indomethacin. However, indomethacin similarly abolishes the natriuresis induced by the angiotensin II antagonist and the ACE inhibitor. CONCLUSIONS: This observation suggests that although angiotensin receptor antagonists do not affect prostaglandin metabolism, the administration of a non-steroidal anti-inflammatory drug blunts the natriuretic response to angiotensin receptor blockade.