127 resultados para Microscopia Confocal
Resumo:
The filamentous brain lesions that define Alzheimer disease (AD) consist of senile plaques and neurofibrillary tangles. Undulated pathological filaments--curly fibers or neuropil threads--also occur in the neuropil. Beta-amyloid precursor proteins are synthesized by many cells outside the central nervous system and recently, deposition of beta-amyloid-protein was reported to occur in non-neuronal tissues. In addition, increasing data claim the importance of chronic inflammation in the pathogenesis of AD. These observations suggest that AD may be a widespread systemic disorder. Here we report that pathological argyrophilic filaments with histochemical properties of amyloid showing striking morphological similarity to curly fibers and/or tangles accumulate not only in ependymal layer and in epithelial cells of choroid plexus, but also in several other organs (e.g. liver, pancreas, ovary, testis, thyroid) in AD. The ependyma, choroid plexus, and various organs of 39 autopsy cases were analyzed. In search of curly fiber and tangle-like changes in organs other than brain, 395 blocks from 21 different tissues of 24 AD cases, 5 cases with discrete or moderate AD-type changes, and 10 control cases were investigated. We found in non-neuronal cells "curly fibers" or "tangles" immunoreactive with antibodies to P component, Tau-protein, ubiquitin, fibronectin, and Apolipoprotein-E, but lacking immunoreactivity with antibodies to neurofilament proteins. Ultrastructurally they consist of densely packed straight and paired helical filaments and closely resemble neurofibrillary tangles and neuropil threads. These observations indicate that the formation of "curly fibers" and "tangles" is not unique to the central nervous system. The results suggest that AD might be a systemic disorder or that similar fibrillary changes to tangles and curly fibers may also be associated with other amyloidosis than beta-amyloidosis. Further investigations are necessary to understand the pathogenetic interest of these fibrillary changes outside the CNS.
Resumo:
In this present thesis Superparamagnetic Iron Oxide Nanoparticles (SPIONs) with 9 nm in diameter were selected as nanocarriers in order to study their potential application as drug delivery systems. Therefore the aim of the study was to demonstrate the proof of concept by establishing an efficient system of drug delivery, which would be a valuable tool in biomedical applications, such as the treatement of cancer, by reducing the side effects due to administration of a high concentration of therapeutic agents. As demonstrated in a previous study, the uptake of SPIONs by tumoral human cells was enhanced by the presence of amino groups on their surface. The stabilization of SPIONs were then performed and optimized by the coating of poly(vinylalcohol) and poly(vinylalcohol/vinylamine). Such nanoparticles were known as aminoPVA-SPIONs. The toxicity and the inflammatory reaction of aminoPVA-SPIONs were evaluated in order to establish their potentiel use in the human body. The results demonstrated that the human cells were able to invaginate aminoPVA-SPIONS without revealing any toxicity and inflammatory reaction. The analysis by transmission electron microscopy (TEM), scanning electron microscopy (SEM), cryo-TEM, confocal microscopy and histological staining (i.e. Prussian Blue) showed that the iron oxide core of SPIONs were located in the cytoplasm of cells and concentrated in vesicles. The evaluation of the mechanism of uptake of aminoPVA-SPIONs revealed that their uptake by monolayer cell culture was performed via an active mechanism, which was achieved by a clathrin-mediated endocytosis. Consequently, it was suggested that aminoPVA-SPIONs were good candidates as nanocarriers in drug delivery systems, which were able to reach the cytoplasm of cells. Their incubation with three-dimensional models mimicing tissues, such as differentiated rat brain cell-derived aggregates and spheroids, revealed that aminoPVA-SPIONs were able to invade into deep cell layers according to the stage of growth of these models. In the view of these promising results, drug-SPIONs were prepared by the functionalization of aminoPVA-SPIONs via a biological labile chemical bond by one of these three antineoplastic agents, which are widely used in clinical practice: 5-fluorourdine (Fur) (an antimetabolite), or camptothecin (CPT) (a topoisomerase inhibitor) or doxorubicin (DOX) (an anthracycline which interfere with DNA). The results shown that drug-SPIONs were internalized by human melanoma cells, as it was expected due the previous results with aminoPVA-SPIONs, and in addition they were active as anticancer agents, suggesting the efficient release of the drug from the drug-SPIONs. The results with CPT-SPIONs were the most promising, whereas DOX- SPIONs did not demonstrate a prononced activity of DOX. In conclusion, the results demonstrated that functionalized iron oxide nanoparticles are a promising tool in order to deliver therapeutic agents. - Dans le cadre de ce travail de thèse, les nanoparticules superparamagnétiques d'oxyde de fer (SPIONs) ayant un diamètre de 9 nm ont été choisies, afin d'étudier leur éventuelle utilisation dans un système de délivrance d'agents thérapeutiques. Ainsi le but de la thèse est de démontrer la faisabilité de fabriquer un système efficace de délivrance d'agents thérapeutiques, qui serait un outil intéressant dans le cadre d'une utilisation biomédicale, par exemple lors du traitement du cancer, qui pourrait réduire les effets secondaires provoqués par le dosage trop élevé de médicaments. Comme il a été démontré dans une précédente étude, l'invagination des SPIONs par des cellules humaines cancéreuses est améliorée par la présence de groupes fonctionnels amino à leur surface. La stabilisation des SPIONs est ainsi effectuée et optimisée par l'enrobage de poly(vinylalcool) et de (poly(vinylalcool/vinylamine), qui sont connues sous le nom de aminoPVA-SPIONs. La toxicité et la réaction inflammatoire des aminoPVA-SPIONs ont été évaluées dans le but de déterminer leur potentielle utilisation dans le corps humain. Les résultats démontrèrent que les cellules humaines sont capables d'invaginer les aminoPVAS-SPIONs sans induire une réaction toxique ou inflammatoire. L'analyse par la microscopie électronique en transmission électronique (TEM), la microscopie électronique à balayage (SEM), le cryo-microscopie électronique (SEM), la microscopie confocale et la coloration histologique (par ex, le bleu de Prusse) a montré que l'oxyde de fer des SPIONs est localisé dans le cytoplasme des cellules et est concentré dans des vesicules. L'évaluation du méchanisme d'invagination des aminoPVA-SPIONs ont révélé que leur invagination par des monocultures de cellules est effectué par un méchanisme actif, contrôlé par une endocytose induite par les clathrins. Par conséquent, les aminoPVA-SPIONs sont de bons candidats en tant que transporteurs (nanocamers) dans un système de délivrance d'agents thérapeuthique, capable d'atteindre le cytoplasme des cellules. Leur incubation avec des modèles tridimenstionnels imitant les tissues, tels que les aggrégats de cellules de cerveau différenciées et les sphéroïdes, a montré que les aminoPVA-SPIONs sont capable de pénétrer dans les couches profondes des modèles, selon l'état d'avancement de leur croissance. En vue de ces résultats prometteurs, les drug-SPIONs ont été préparés en fonctionalisant les aminoPVA-SPIONs par le biai d'une liaison chimique labile par un des trois agents thérapeutiques, déjà utilisé en pratique : 5-fluorourdine (Fur) (un antimétabolite), or camptothecin (CPT) (un inhibiteur de la topoisomerase) or doxorubicin (DOX) (un anthracycline qui interfère avec le DNA). Les résultats ont montré que les drug-SPIONs sont capable d'être internalisés par les mélanomes, comme il a été attendu d'après les résultats obtenus précédemment avec les aminoPVA-SPIONs, et de plus, les drug-SPIONs sont actifs, ce qui suggère un relargage efficace de l'agent thérapeutique du drug-SPIONs. Les résultats obtenus avec les CPT-SPIONs sont les plus prometteurs, tandis que ceux avec les DOX-SPIONs, ce n'est pas le cas, dont l'activité thérapeutique de DOX n'a pas été aussi efficace. En conclusion, les résultats ont pu démontrer que les nanoparticules d'oxyde de fer fonctionnalisées sont un outil prometteur dans la délivrance d'agents thérapeutiques.
Resumo:
Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.
Resumo:
Expression of laminin-5 alpha3, beta3 and gamma2 protein subunits was investigated in colorectal adenocarcinomas using immunostaining and confocal microscopy. The laminin-5 heterotrimer was found in basement membranes and as extracellular deposits in tumor stroma. In contrast to the alpha3 subunit, which was under-expressed, the gamma2 and beta3 subunits were detected in the cytoplasm of carcinoma cells dissociating (budding) from neoplastic tubules, suggestive of focal alterations in laminin-5 assembly and secretion. Laminin-5 gamma2 or beta3 subunit-reactive budding carcinoma cells expressed cytokeratins but not vimentin; they did not proliferate and were not apoptotic. Furthermore, expression of laminin-5 gamma2 and beta3 subunits in budding cells was associated with focal under-expression of the E-cadherin-beta-catenin complex. Results from xenograft experiments showed that budding activity in colorectal adenocarcinomas could be suppressed when these tumors grew at ectopic s.c. sites in nude mice. In vitro, cultured colon carcinoma cells, but not adenoma-derived tumor cells, shared the laminin-5 phenotype expressed by carcinoma cells in vivo. Using colon carcinoma cell lines implanted orthotopically and invading the cecum of nude mice, the laminin-5-associated budding was restored, indicating that this phenotype is not only determined by tumor cell properties but also dependent on the tissue micro-environment. Our results indicate that both laminin-5 alpha3 subunit expression and cell-cell cohesiveness are altered in budding carcinoma cells, which we consider to be actively invading. We propose that the local tissue micro-environment contributes to these events.
Resumo:
This study was designed to evaluate the potential of gas-filled microbubbles (MB) to be internalized by antigen-presenting cells (APC). Fluorescently labeled MB were prepared, thus permitting to track binding to, and internalization in, APC. Both human and mouse cells, including monocytes and dendritic cells (DC), prove capable to phagocyte MB in vitro. Observation by confocal laser scanning microscopy showed that interaction between MB and target cells resulted in a rapid internalization in cellular compartments and to a lesser extent in the cytoplasm. Capture of MB by APC resulted in phagolysosomal targeting as verified by double staining with anti-lysosome-associated membrane protein-1 monoclonal antibody and decrease of internalization by phagocytosis inhibitors. Fluorescent MB injected subcutaneously (s.c.) in mice were found to be associated with CD11c(+)DC in lymph nodes draining the injection sites 24 h after administration. Altogether, our study demonstrates that MB can successfully target APC both in vitro and in vivo, and thus may serve as a potent Ag delivery system without requirement for ultrasound-based sonoporation. This adds to the potential of applications of MB already extensively used for diagnostic imaging in humans.
Resumo:
The physiological significance of the presence of GLUT2 at the food-facing pole of intestinal cells is addressed by a study of fructose absorption in GLUT2-null and control mice submitted to different sugar diets. Confocal microscopy localization, protein and mRNA abundance, as well as tissue and membrane vesicle uptakes of fructose were assayed. GLUT2 was located in the basolateral membrane of mice fed a meal devoid of sugar or containing complex carbohydrates. In addition, the ingestion of a simple sugar meal promoted the massive recruitment of GLUT2 to the food-facing membrane. Fructose uptake in brush-border membrane vesicles from GLUT2-null mice was half that of wild-type mice and was similar to the cytochalasin B-insensitive component, i.e. GLUT5-mediated uptake. A 5 day consumption of sugar-rich diets increased fructose uptake fivefold in wild-type tissue rings when it only doubled in GLUT2-null tissue. GLUT5 was estimated to contribute to 100 % of total uptake in wild-type mice fed low-sugar diets, falling to 60 and 40 % with glucose and fructose diets respectively; the complement was ensured by GLUT2 activity. The results indicate that basal sugar uptake is mediated by the resident food-facing SGLT1 and GLUT5 transporters, whose mRNA abundances double in long-term dietary adaptation. We also observe that a large improvement of intestinal absorption is promoted by the transient recruitment of food-facing GLUT2, induced by the ingestion of a simple-sugar meal. Thus, GLUT2 and GLUT5 could exert complementary roles in adapting the absorption capacity of the intestine to occasional or repeated loads of dietary sugars.
Resumo:
Odorant receptor (OR) genes constitute with 1200 members the largest gene family in the mouse genome. A mature olfactory sensory neuron (OSN) is thought to express just one OR gene, and from one allele. The cell bodies of OSNs that express a given OR gene display a mosaic pattern within a particular region of the main olfactory epithelium. The mechanisms and cis-acting DNA elements that regulate the expression of one OR gene per OSN - OR gene choice - remain poorly understood. Here, we describe a reporter assay to identify minimal promoters for OR genes in transgenic mice, which are produced by the conventional method of pronuclear injection of DNA. The promoter transgenes are devoid of an OR coding sequence, and instead drive expression of the axonal marker tau-β-galactosidase. For four mouse OR genes (M71, M72, MOR23, and P3) and one human OR gene (hM72), a mosaic, OSN-specific pattern of reporter expression can be obtained in transgenic mice with contiguous DNA segments of only ~300 bp that are centered around the transcription start site (TSS). The ~150bp region upstream of the TSS contains three conserved sequence motifs, including homeodomain (HD) binding sites. Such HD binding sites are also present in the H and P elements, DNA sequences that are known to strongly influence OR gene expression. When a 19mer encompassing a HD binding site from the P element is multimerized nine times and added upstream of a MOR23 minigene that contains the MOR23 coding region, we observe a dramatic increase in the number of transgene-expressing founders and lines and in the number of labeled OSNs. By contrast, a nine times multimerized 19mer with a mutant HD binding site does not have these effects. We hypothesize that HD binding sites in the H and P elements and in OR promoters modulate the probability of OR gene choice.
Resumo:
Changes in intracellular Na(+) concentration underlie essential neurobiological processes, but few reliable tools exist for their measurement. Here we characterize a new synthetic Na(+)-sensitive fluorescent dye, Asante Natrium Green (ANG), with unique properties. This indicator was excitable in the visible spectrum and by two-photon illumination, suffered little photobleaching and located to the cytosol were it remained for long durations without noticeable unwanted effects on basic cell properties. When used in brain tissue, ANG yielded a bright fluorescent signal during physiological Na(+) responses both in neurons and astrocytes. Synchronous electrophysiological and fluorometric recordings showed that ANG produced accurate Na(+) measurement in situ. This new Na(+) indicator opens innovative ways of probing neuronal circuits.
Resumo:
Canine distemper virus (CDV), a mobillivirus related to measles virus causes a chronic progressive demyelinating disease, associated with persistence of the virus in the central nervous system (CNS). CNS persistence of morbilliviruses has been associated with cell-to-cell spread, thereby limiting immune detection. The mechanism of cell-to-cell spread remains uncertain. In the present study we studied viral spread comparing a cytolytic (non-persistent) and a persistent CDV strain in cell cultures. Cytolytic CDV spread in a compact concentric manner with extensive cell fusion and destruction of the monolayer. Persistent CDV exhibited a heterogeneous cell-to-cell pattern of spread without cell fusion and 100-fold reduction of infectious viral titers in supernatants as compared to the cytolytic strain. Ultrastructurally, low infectious titers correlated with limited budding of persistent CDV as compared to the cytolytic strain, which shed large numbers of viral particles. The pattern of heterogeneous cell-to-cell viral spread can be explained by low production of infectious viral particles in only few areas of the cell membrane. In this way persistent CDV only spreads to a small proportion of the cells surrounding an infected one. Our studies suggest that both cell-to-cell spread and limited production of infectious virus are related to reduced expression of fusogenic complexes in the cell membrane. Such complexes consist of a synergistic configuration of the attachment (H) and fusion (F) proteins on the cell surface. F und H proteins exhibited a marked degree of colocalization in cytolytic CDV infection but not in persistent CDV as seen by confocal laser microscopy. In addition, analysis of CDV F protein expression using vaccinia constructs of both strains revealed an additional large fraction of uncleaved fusion protein in the persistent strain. This suggests that the paucity of active fusion complexes is due to restricted intracellular processing of the viral fusion protein.
Resumo:
PURPOSE: To evaluate the efficacy of coulomb-controlled iontophoresis (CCI) for delivery of riboflavin prior to corneal collagen cross-linking (CXL). METHODS: The eyes of 20 8-week-old Lewis rats, subject to epithelium-ON (epi-ON, n = 20 eyes) or epithelium-OFF (epi-OFF, n = 20 eyes) conditions, were used to evaluate the in vivo delivery of two riboflavin solutions: 0.1% riboflavin-20% dextran T500 solution (riboflavin-dextran) and 0.1% riboflavin 5'-phosphate (riboflavin-phosphate). After systemic intramuscular anesthesia, 0.25 mL of the photosensitizing agent was delivered by either instillation or CCI (2.11 mA/cm(2) for 4 or 10 minutes) into either epithelial condition. The CCI probe on the eye without current served as control. Confocal microscopy of flat-mounted corneas was used to analyze intracorneal penetration and fluorometry was used to quantify riboflavin in the aqueous within 30 minutes of treatment. RESULTS: Instillation and CCI allowed for uniform delivery of riboflavin-dextran throughout the stroma after epithelial debridement. Transepithelial delivery of riboflavin-dextran was not efficacious. Riboflavin-phosphate was successfully delivered in both epithelium conditions. Complete saturation of the cornea was achieved using CCI after removing the epithelium, the epi-ON case allowed for limited diffusion. Increasing the time from 4 to 10 minutes greatly increased the amount of riboflavin detected in the cornea and aqueous humor. CONCLUSIONS: Coulomb-controlled iontophoresis is an effective technique for transepithelial delivery of riboflavin-phosphate into the cornea. This drug delivery method would allow clinicians to significantly shorten the time required for the CXL procedure, with or without epithelial debridement. Whether efficient crosslinking can be achieved through an intact epithelium remains to be demonstrated.
Resumo:
Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.
Resumo:
Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.
Resumo:
ABSTRACT The network of actin cytoskeleton is composed of actin filaments (F-actin) that are made by polymerisation of actin monomers and actin binding proteins. It is required for growth and morphogenesis of eukaryotic cells. The labelling of F-actin with constitutively expressed GFP-Talin (Kost et al., 1998) reveals the organisation of cellular actin networks in plants. Due to the lack of information on actin cytoskeleton through gametophytic development of the model moss plant Physcornitrella patens, stable transgenic lines overexpressing GFP-Talin were generated to detect F-actin structures. It is shown that the 35S promoter driven expression is not suitable for F-actin labelling in all cells. When it is replaced by the inducible heat-shock promoter Gmhsp17.3 from soybean, one hour mild heat stress at 37°C followed by recovery at 25°C is enough to induce efficient and transient labelling in all tissues without altering cellular morphology. The optimal observations of F-actin structures at different stages of moss development can be done between 12-18 hours after the induction. By using confocal microscopy, we demonstrate that stellated actin arrays were densely accumulated at the growing tip in regenerating protoplasts, apical protonemal cells and rhizoids and connected with a fine dispersed F-actin mesh. Following three-dimensional growth, the cortical star-like structures are widespread in the meristematic cells of developing bud and young gametophores. On the contrary, undulating networks of actin cables are found at the final stage of cell differentiation. During redifferentiation of mature leaf cells into protonemal filaments the rather stagnant web of actin cables is replaced by diffuse actin meshwork. In eukaryotes, nucleation of the actin monomers prior to their polymerization is driven by the seven-subunit ARP2/3 complex and formins. We cloned the gene encoding the ARP3 subunit of P. patens and generated arp3 mutants of the moss through gene disruption. The knockout of ARP3 affects the elongation of chloronemal cells and blocks further differentiation of caulonemal cells and rhizoids, and the gametophores are slightly stunted compared to wild-type. The arp mutants were created in the heat-shock inducible GFP-Talin strains allowing us to visualise a disorganised actin network and a lack of star-like actin cytoskeleton arrays. We conclude that ARP2/3 dependent nucleation of actin filaments is critical for the growth of filamentous cells, which in turn influences moss colonization. In complementation assays, the overexpression of Physcomitrella and Arab idopsis ARP3 genes in the moss arp3 mutant results in full recovery of wild type phenotype. In contrast the ARP3 subunit of fission yeast is not able to complement the moss arp3 mutant of moss indicating that regulation of the ARP2/3 dependent actin nucleation diverged in different kingdoms. RESUME Le réseau d'actine est composé de filaments de F-actine et d'un ensemble de protéines s'y attachant (Actin binding proteins). Le réseau d'actine est nécessaire à la croissance et à la morphogenèse de toutes les cellules eucaryotes. Chez les plantes, le marquage ainsi que l'étude de l'organisation du réseau d'actine ont été réalisés en utilisant une fusion GFP-Talin (Kost et al., 1998) exprimée sous le control d'un promoteur constitutif. Afin d'étudier les structures F-actine dans les cellules de Physcomitrella Patens et pour combler le manque d'information sur le développement des gamétophores, des lignées transgéniques stables surexprimant GFP-Talin ont été crées. Nous avons démontré que l'utilisation du promoteur 35S est inadéquate pour le marquage complet et homogène des filaments d'actine dans toutes les cellules de P. patens. Par contre, l'utilisation du promoteur inductible Gmhsp17.3 nous a permis de réaliser un marquage transitoire et général dans tous les tissus de la mousse. Une heure de choc thermique à 37°C suivis d'un temps de récupération de 12-18h à 25°C sont les conditions optimales (sans dommages cellulaires) pour l'observation des structures F-actine à différentes étapes de développement de la mousse. En utilisant la microscopie confocale, nous avons observé l'existence de structures F-actine accumulées en forme d'étoiles. Ces structures, qui sont liées au réseau de microfilaments d'actine, ont été observées dans les protoplastes en régénération, les cellules des protonema apicales ainsi que dans les rhizoïdes. En suivant la croissance tridimensionnelle, ces structures en étoiles ont été observées dans les cellules meristématiques des bourgeons et des jeunes gamétophores. Par contre, dans les cellules différentiées ces structures laissent place à des réseaux de câbles épais. Nous avons également remarqué que durant la redifferentiation des cellules foliaires le réseau de câbles de F-actine est remplacé par un réseau de F-actine diffus. Dans les cellules eucaryotes, la nucléation des filaments d'actirie précédant leur polymérisation est contrôlé par sept sous unités du complexe ARP2/3 et par des formines. Nous avons isolé le gène codant pour la sous unité ARP3 de P. patens et nous avons crée des mutants arp3 par intégration ciblée (Knockout). L'élongation des cellules chloronema est clairement affectée dans les mutants arp3. La différentiation des caulonemata et des rhizoïdes est bloquée et les gametophores sont légèrement plus courts comparé au type sauvage. A fin d'étudier l'organisation des filaments d'actines dans les mutants arp3, nous avons aussi réalisé un arp3-knockout dans la lignée Hsp-GFP-Talin. La nouvelle lignée générée nous a permis de visualiser une désorganisation du réseau d'actine et une absence complète de structures de F-actine accumulée en forme d'étoiles. Les résultats obtenus nous amènent à conclure que la nucléation (ARP2/3 dépendante) des filaments d'actine est indispensable à la croissance des cellules filamenteuses. Par conséquent, les filaments d'actine semblent avoir un rôle dans la colonisation des milieux par les mousses. Nous avons également procédé à des essais de complémentation du mutant arp3. La surexpression des gènes ARP3 de Physcomitrella et d'Arabidopsis dans les cellules du mutant arp3 rétabli complètement le phénotype WT. Par contre, le gène ARP3 des levures n'est pas suffisant pour complémenter la même mutation dans les cellules de mousses. Ce résultat démontre que les mécanismes de régulation de la nucléation des filaments d'actine (ARP2/3 dépendante) sont différents entre les différents groupes d'eucaryotes.
Resumo:
Passive immunization against β-amyloid (Aβ) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimer's disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to vasogenic edema and cerebral microhemorrhage. Here, we describe the generation of a humanized anti-Aβ monoclonal antibody of an IgG4 isotype, known as MABT5102A (MABT). An IgG4 subclass was selected to reduce the risk of Fcγ receptor-mediated overactivation of microglia. MABT bound with high affinity to multiple forms of Aβ, protected against Aβ1-42 oligomer-induced cytotoxicity, and increased uptake of neurotoxic Aβ oligomers by microglia. Furthermore, MABT-mediated amyloid plaque removal was demonstrated using in vivo live imaging in hAPP((V717I))/PS1 transgenic mice. When compared with a human IgG1 wild-type subclass, containing the same antigen-binding variable domains and with equal binding to Aβ, MABT showed reduced activation of stress-activated p38MAPK (p38 mitogen-activated protein kinase) in microglia and induced less release of the proinflammatory cytokine TNFα. We propose that a humanized IgG4 anti-Aβ antibody that takes advantage of a unique Aβ binding profile, while also possessing reduced effector function, may provide a safer therapeutic alternative for passive immunotherapy for AD. Data from a phase I clinical trial testing MABT is consistent with this hypothesis, showing no signs of vasogenic edema, even in ApoE4 carriers.
Resumo:
Cardiac hypertrophy is associated with alterations in cardiomyocyte excitation-contraction coupling (ECC) and Ca(2+) handling. Chronic elevation of plasma angiotensin II (Ang II) is a major determinant in the pathogenesis of cardiac hypertrophy and congestive heart failure. However, the molecular mechanisms by which the direct actions of Ang II on cardiomyocytes contribute to ECC remodeling are not precisely known. This question was addressed using cardiac myocytes isolated from transgenic (TG1306/1R [TG]) mice exhibiting cardiac specific overexpression of angiotensinogen, which develop Ang II-mediated cardiac hypertrophy in the absence of hemodynamic overload. Electrophysiological techniques, photolysis of caged Ca(2+) and confocal Ca(2+) imaging were used to examine ECC remodeling at early ( approximately 20 weeks of age) and late ( approximately 60 weeks of age) time points during the development of cardiac dysfunction. In young TG mice, increased cardiac Ang II levels induced a hypertrophic response in cardiomyocyte, which was accompanied by an adaptive change of Ca(2+) signaling, specifically an upregulation of the Na(+)/Ca(2+) exchanger-mediated Ca(2+) transport. In contrast, maladaptation was evident in older TG mice, as suggested by reduced sarcoplasmic reticulum Ca(2+) content resulting from a shift in the ratio of plasmalemmal Ca(2+) removal and sarcoplasmic reticulum Ca(2+) uptake. This was associated with a conserved ECC gain, consistent with a state of hypersensitivity in Ca(2+)-induced Ca(2+) release. Together, our data suggest that chronic elevation of cardiac Ang II levels significantly alters cardiomyocyte ECC in the long term, and thereby contractility, independently of hemodynamic overload and arterial hypertension.