213 resultados para Magnetic oxides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PERFORM MRI Project was an ancillary study of the PERFORM trial. Its aim was to investigate the potential effects of terutroban in patients with atherothrombotic disorders, in comparison to aspirin, on the evolution of magnetic resonance imaging (MRI) lesions after a recent ischemic stroke or transient ischemic attack (TIA). The change in both hypointense and hyperintense lesions on the fluid attenuated inversion recovery (FLAIR) sequence, in the total brain volume and in the hippocampal volume from baseline (M1) to the final visit (M24) was assessed as well as the number of emergent microbleeds. A total of 748 patients had their MRI examination validated both at M1 and M24 during the study. At baseline, the volume of hypointense and hyperintense lesions on FLAIR images, the total brain volume, the hippocampal volume and the number of patients with microbleeds did not differ between the two groups. During follow-up, the mean volumetric increase of lesions hypointense or hyperintense on FLAIR images (from 5 to 8 %), the mean reduction of total brain volume (−0.4 %) and of hippocampal volume (−4 %), did not differ between the two treatment arms. The same parameters analysed ipsilateral to the ischaemic lesion did not differ either between the two groups. In the terutroban group, 16.3 % of patients presented with emergent microbleeds, 10.7 % in the aspirin group; this difference was not significant. In the PERFORM study, the progression of FLAIR lesions, of cerebral or hippocampal atrophy and of microbleeds did not differ between patients treated by terutroban and those treated by aspirin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and MRI are used for detecting liver metastases from uveal melanoma. The introduction of new treatment options in clinical trials might benefit from early response assessment. Here, we determine the value of FDG-PET/CT with respect to MRI at diagnosis and its potential for monitoring therapy. MATERIAL AND METHODS: Ten patients with biopsy-proven liver metastases of uveal melanoma enrolled in a randomized phase III trial (NCT00110123) underwent both FDG-PET coupled with unenhanced CT and gadolinium-diethylene triamine pentaacetic acid-enhanced liver MRI within 4 weeks. FDG-PET and MRI were evaluated blindly and then compared using the ratio of lesion to normal liver parenchyma PET-derived standardized uptake value (SUV). The influence of lesion size and response to chemotherapy were studied. RESULTS: Overall, 108 liver lesions were seen: 34 (31%) on both modalities (1-18 lesions/patient), four (4%) by PET/CT only, and 70 (65%) by MRI only. SUV correlated with MRI lesion size (r=0.81, P<0.0001). PET/CT detected 26 of 33 (79%) MRI lesions of more than or equal to 1.2 cm, whereas it detected only eight of 71 (11%) lesions of less than 1.2 cm (P<0.0001). MRI lesions without PET correspondence were small (0.6±0.2 vs. 2.1±1.1 cm, P<0.0001). During follow-up (six patients, 30 lesions), the ratio lesion-to-normal-liver SUV diminished in size-stable lesions (1.90±0.64-1.46±0.50, P<0.0001), whereas it increased in enlarging lesions (1.56±0.40-1.99±0.56, P=0.032). CONCLUSION: MRI outweighs PET/CT for detecting small liver metastases. However, PET/CT detected at least one liver metastasis per patient and changes in FDG uptake not related to size change, suggesting a role in assessing early therapy response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Cardiovascular magnetic resonance (CMR) has become a robust and important diagnostic imaging modality in cardiovascular medicine. However,insufficient image quality may compromise its diagnostic accuracy. No standardized criteria are available to assess the quality of CMR studies. We aimed todescribe and validate standardized criteria to evaluate the quality of CMR studies including: a) cine steady-state free precession, b) delayed gadoliniumenhancement, and c) adenosine stress first-pass perfusion. These criteria will serve for the assessment of the image quality in the setting of the Euro-CMR registry.METHOD AND MATERIALS: First, a total of 45 quality criteria were defined (35 qualitative criteria with a score from 0-3, and 10 quantitative criteria). Thequalitative score ranged from 0 to 105. The lower the qualitative score, the better the quality. The quantitative criteria were based on the absolute signal intensity (delayed enhancement) and on the signal increase (perfusion) of the anterior/posterior left ventricular wall after gadolinium injection. These criteria were then applied in 30 patients scanned with a 1.5T system and in 15 patients scanned with a 3.0T system. The examinations were jointly interpreted by 3 CMR experts and 1 study nurse. In these 45 patients the correlation between the results of the quality assessment obtained by the different readers was calculated.RESULTS: On the 1.5T machine, the mean quality score was 3.5. The mean difference between each pair of observers was 0.2 (5.7%) with a mean standarddeviation of 1.4. On the 3.0T machine, the mean quality score was 4.4. The mean difference between each pair of onservers was 0.3 (6.4%) with a meanstandard deviation of 1.6. The quantitative quality assessments between observers were well correlated for the 1.5T machine: R was between 0.78 and 0.99 (pCONCLUSION: The described criteria for the assessment of CMR image quality are robust and have a low inter-observer variability, especially on 1.5T systems.CLINICAL RELEVANCE/APPLICATION: These criteria will allow the standardization of CMR examinations. They will help to improve the overall quality ofexaminations and the comparison between clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel tracks for clinical scientists, basic scientists, and pediatric imagers was the novel approach taken for the highly successful 8th Annual Scientific Sessions of the Society for Cardiovascular Magnetic Resonance, held in San Francisco, California, January 21 to 23, 2005. Attendees were immersed in information on the latest scientific advances in cardiovascular magnetic resonance (CMR) from mice to man and technological advances from systems with field strengths from 0.5 T to 11.7 T. State-of-the-art applications were reviewed, spanning a wide range from molecular imaging to predicting outcome with CMR in large patient populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine and compare the diagnostic performance of magnetic resonance imaging (MRI) and computed tomography (CT) for the diagnosis of tumor extent in advanced retinoblastoma, using histopathologic analysis as the reference standard. DESIGN: Systematic review and meta-analysis. PARTICIPANTS: Patients with advanced retinoblastoma who underwent MRI, CT, or both for the detection of tumor extent from published diagnostic accuracy studies. METHODS: Medline and Embase were searched for literature published through April 2013 assessing the diagnostic performance of MRI, CT, or both in detecting intraorbital and extraorbital tumor extension of retinoblastoma. Diagnostic accuracy data were extracted from included studies. Summary estimates were based on a random effects model. Intrastudy and interstudy heterogeneity were analyzed. MAIN OUTCOME MEASURES: Sensitivity and specificity of MRI and CT in detecting tumor extent. RESULTS: Data of the following tumor-extent parameters were extracted: anterior eye segment involvement and ciliary body, optic nerve, choroidal, and (extra)scleral invasion. Articles on MRI reported results of 591 eyes from 14 studies, and articles on CT yielded 257 eyes from 4 studies. The summary estimates with their 95% confidence intervals (CIs) of the diagnostic accuracy of conventional MRI at detecting postlaminar optic nerve, choroidal, and scleral invasion showed sensitivities of 59% (95% CI, 37%-78%), 74% (95% CI, 52%-88%), and 88% (95% CI, 20%-100%), respectively, and specificities of 94% (95% CI, 84%-98%), 72% (95% CI, 31%-94%), and 99% (95% CI, 86%-100%), respectively. Magnetic resonance imaging with a high (versus a low) image quality showed higher diagnostic accuracies for detection of prelaminar optic nerve and choroidal invasion, but these differences were not statistically significant. Studies reporting the diagnostic accuracy of CT did not provide enough data to perform any meta-analyses. CONCLUSIONS: Magnetic resonance imaging is an important diagnostic tool for the detection of local tumor extent in advanced retinoblastoma, although its diagnostic accuracy shows room for improvement, especially with regard to sensitivity. With only a few-mostly old-studies, there is very little evidence on the diagnostic accuracy of CT, and generally these studies show low diagnostic accuracy. Future studies assessing the role of MRI in clinical decision making in terms of prognostic value for advanced retinoblastoma are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Lumbar spinal stenosis (LSS) treatment is based primarily on the clinical criteria providing that imaging confirms radiological stenosis. The radiological measurement more commonly used is the dural sac cross-sectional area (DSCA). It has been recently shown that grading stenosis based on the morphology of the dural sac as seen on axial T2 MRI images, better reflects severity of stenosis than DSCA and is of prognostic value. This radiological prospective study investigates the variability of surface measurements and morphological grading of stenosis for varying degrees of angulation of the T2 axial images relative to the disc space as observed in clinical practice. MATERIALS AND METHODS: Lumbar spine TSE T2 three-dimensional (3D) MRI sequences were obtained from 32 consecutive patients presenting with either suspected spinal stenosis or low back pain. Axial reconstructions using the OsiriX software at 0°, 10°, 20° and 30° relative to the disc space orientation were obtained for a total of 97 levels. For each level, DSCA was digitally measured and stenosis was graded according to the 4-point (A-D) morphological grading by two observers. RESULTS: A good interobserver agreement was found in grade evaluation of stenosis (k = 0.71). DSCA varied significantly as the slice orientation increased from 0° to +10°, +20° and +30° at each level examined (P < 0.0001) (-15 to +32% at 10°, -24 to +143% at 20° and -29 to +231% at 30° of slice orientation). Stenosis definition based on the surface measurements changed in 39 out of the 97 levels studied, whereas the morphology grade was modified only in two levels (P < 0.01). DISCUSSION: The need to obtain continuous slices using the classical 2D MRI acquisition technique entails often at least a 10° slice inclination relative to one of the studied discs. Even at this low angulation, we found a significantly statistical difference between surface changes and morphological grading change. In clinical practice, given the above findings, it might therefore not be necessary to align the axial cuts to each individual disc level which could be more time-consuming than obtaining a single series of axial cuts perpendicular to the middle of the lumbar spine or to the most stenotic level. In conclusion, morphological grading seems to offer an alternative means of assessing severity of spinal stenosis that is little affected by image acquisition technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For free-breathing, high-resolution, three-dimensional coronary magnetic resonance angiography (MRA), the use of intravascular contrast agents may be helpful for contrast enhancement between coronary blood and myocardium. In six patients, 0.1 mmol/kg of the intravascular contrast agent MS-325/AngioMARK was given intravenously followed by double-oblique, free-breathing, three-dimensional inversion-recovery coronary MRA with real-time navigator gating and motion correction. Contrast-enhanced, three-dimensional coronary MRA images were compared with images obtained with a T2 prepulse (T2Prep) without exogenous contrast. The contrast-enhanced images demonstrated a 69% improvement in the contrast-to-noise ratio (6.6 +/- 1.1 vs. 11.1 +/- 2.5; P < 0.01) compared with the T2Prep approach. By using the intravascular agent, extensive portions (> 80 mm) of the native left and right coronary system could be displayed consistently with sub-millimeter in-plane resolution. The intravascular contrast agent, MS-325/AngioMARK, leads to a considerable enhancement of the blood/muscle contrast for coronary MRA compared with T2Prep techniques. The clinical value of the agent remains to be defined in a larger patient series. J. Magn. Reson. Imaging 1999;10:790-799.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning and pattern recognition methods have been used to diagnose Alzheimer's disease (AD) and mild cognitive impairment (MCI) from individual MRI scans. Another application of such methods is to predict clinical scores from individual scans. Using relevance vector regression (RVR), we predicted individuals' performances on established tests from their MRI T1 weighted image in two independent data sets. From Mayo Clinic, 73 probable AD patients and 91 cognitively normal (CN) controls completed the Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), and Auditory Verbal Learning Test (AVLT) within 3months of their scan. Baseline MRI's from the Alzheimer's disease Neuroimaging Initiative (ADNI) comprised the other data set; 113 AD, 351 MCI, and 122 CN subjects completed the MMSE and Alzheimer's Disease Assessment Scale-Cognitive subtest (ADAS-cog) and 39 AD, 92 MCI, and 32 CN ADNI subjects completed MMSE, ADAS-cog, and AVLT. Predicted and actual clinical scores were highly correlated for the MMSE, DRS, and ADAS-cog tests (P<0.0001). Training with one data set and testing with another demonstrated stability between data sets. DRS, MMSE, and ADAS-Cog correlated better than AVLT with whole brain grey matter changes associated with AD. This result underscores their utility for screening and tracking disease. RVR offers a novel way to measure interactions between structural changes and neuropsychological tests beyond that of univariate methods. In clinical practice, we envision using RVR to aid in diagnosis and predict clinical outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acquisition duration of most three-dimensional (3D) coronary magnetic resonance angiography (MRA) techniques is considerably prolonged, thereby precluding breathholding as a mechanism to suppress respiratory motion artifacts. Splitting the acquired 3D volume into multiple subvolumes or slabs serves to shorten individual breathhold duration. Still, problems associated with misregistration due to inconsistent depths of expiration and diaphragmatic drift during sustained respiration remain to be resolved. We propose the combination of an ultrafast 3D coronary MRA imaging sequence with prospective real-time navigator technology, which allows correction of the measured volume position. 3D volume splitting using prospective real-time navigator technology, was successfully applied for 3D coronary MRA in five healthy individuals. An ultrafast 3D interleaved hybrid gradient-echoplanar imaging sequence, including T2Prep for contrast enhancement, was used with the navigator localized at the basal anterior wall of the left ventricle. A 9-cm-thick volume, with in-plane spatial resolution of 1.1 x 2.2 mm, was acquired during five breathholds of 15-sec duration each. Consistently, no evidence of misregistration was observed in the images. Extensive contiguous segments of the left anterior descending coronary artery (48 +/- 18 mm) and the right coronary artery (75 +/- 5 mm) could be visualized. This technique has the potential for screening for anomalous coronary arteries, making it well suited as part of a larger clinical MR examination. In addition, this technique may also be applied as a scout scan, which allows an accurate definition of imaging planes for subsequent high-resolution coronary MRA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papez circuit is one of the major pathways of the limbic system, and it is involved in the control of memory and emotion. Structural and functional alterations have been reported in psychiatric, neurodegenerative, and epileptic diseases. Despite the clinical interest, however, in-vivo imaging of the entire circuit remains a technological challenge. We used magnetic resonance diffusion spectrum imaging to comprehensively picture the Papez circuit in healthy humans: (i) the hippocampus-mammillary body pathway, (ii) the connections between the lateral subiculum and the cingulate cortex, and (iii) the mammillo-thalamic tract. The diagnostic and therapeutic implications of these results are discussed in the context of recent findings reporting the involvement of the Papez circuit in neurological and psychiatric diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: During its German pilot phase, the EuroCMR (European Cardiovascular Magnetic Resonance) registry sought to evaluate indications, image quality, safety, and impact on patient management of routine CMR. BACKGROUND: CMR has a broad range of applications and is increasingly used in clinical practice. METHODS: This was a multicenter registry with consecutive enrollment of patients in 20 German centers. RESULTS: A total of 11,040 consecutive patients were enrolled. Eighty-eight percent of patients received gadolinium-based contrast agents. Twenty-one percent underwent adenosine perfusion, and 11% high-dose dobutamine-stress CMR. The most important indications were workup of myocarditis/cardiomyopathies (32%), risk stratification in suspected coronary artery disease/ischemia (31%), as well as assessment of viability (15%). Image quality was good in 90.1%, moderate in 8.1%, and inadequate in 1.8% of cases. Severe complications occurred in 0.05%, and were all associated with stress testing. No patient died during or due to CMR. In nearly two-thirds of patients, CMR findings impacted patient management. Importantly, in 16% of cases the final diagnosis based on CMR was different from the diagnosis before CMR, leading to a complete change in management. In more than 86% of cases, CMR was capable of satisfying all imaging needs so that no further imaging was required. CONCLUSIONS: CMR is frequently performed in clinical practice in many participating centers. The most important indications are workup of myocarditis/cardiomyopathies, risk stratification in suspected coronary artery disease/ischemia, and assessment of viability. CMR imaging as used in the centers of the pilot registry is a safe procedure, has diagnostic image quality in 98% of cases, and its results have strong impact on patient management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In coronary magnetic resonance angiography, a magnetization-preparation scheme for T2 -weighting (T2 Prep) is widely used to enhance contrast between the coronary blood-pool and the myocardium. This prepulse is commonly applied without spatial selection to minimize flow sensitivity, but the nonselective implementation results in a reduced magnetization of the in-flowing blood and a related penalty in signal-to-noise ratio. It is hypothesized that a spatially selective T2 Prep would leave the magnetization of blood outside the T2 Prep volume unaffected and thereby lower the signal-to-noise ratio penalty. To test this hypothesis, a spatially selective T2 Prep was implemented where the user could freely adjust angulation and position of the T2 Prep slab to avoid covering the ventricular blood-pool and saturating the in-flowing spins. A time gap of 150 ms was further added between the T2 Prep and other prepulses to allow for in-flow of a larger volume of unsaturated spins. Consistent with numerical simulation, the spatially selective T2 Prep increased in vivo human coronary artery signal-to-noise ratio (42.3 ± 2.9 vs. 31.4 ± 2.2, n = 22, P < 0.0001) and contrast-to-noise-ratio (18.6 ± 1.5 vs. 13.9 ± 1.2, P = 0.009) as compared to those of the nonselective T2 Prep. Additionally, a segmental analysis demonstrated that the spatially selective T2 Prep was most beneficial in proximal and mid segments where the in-flowing blood volume was largest compared to the distal segments. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnosis of idiopathic Parkinson's disease (IPD) is entirely clinical. The fact that neuronal damage begins 5-10 years before occurrence of sub-clinical signs, underlines the importance of preclinical diagnosis. A new approach for in-vivo pathophysiological assessment of IPD-related neurodegeneration was implemented based on recently developed neuroimaging methods. It is based on non- invasive magnetic resonance data sensitive to brain tissue property changes that precede macroscopic atrophy in the early stages of IPD. This research aims to determine the brain tissue property changes induced by neurodegeneration that can be linked to clinical phenotypes which will allow us to create a predictive model for early diagnosis in IPD. We hypothesized that the degree of disease progression in IPD patients will have a differential and specific impact on brain tissue properties used to create a predictive model of motor and non-motor impairment in IPD. We studied the potential of in-vivo quantitative imaging sensitive to neurodegeneration- related brain tissue characteristics to detect changes in patients with IPD. We carried out methodological work within the well established SPM8 framework to estimate the sensitivity of tissue probability maps for automated tissue classification for detection of early IPD. We performed whole-brain multi parameter mapping at high resolution followed by voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) comparing healthy subjects to IPD patients. We found a trend demonstrating non-significant tissue property changes in the olfactory bulb area using the MT and R1 parameter with p<0.001. Comparing to the IPD patients, the healthy group presented a bilateral higher MT and R1 intensity in this specific functional region. These results did not correlate with age, severity or duration of disease. We failed to demonstrate any changes with the R2* parameter. We interpreted our findings as demyelination of the olfactory tract, which is clinically represented as anosmia. However, the lack of correlation with duration or severity complicates its implications in the creation of a predictive model of impairment in IPD.