99 resultados para Logit fixed effect model
Resumo:
Effet d'un bolus intraveineux de phénylephrine ou d'éphedríne sur le flux sanguin cutané lors d'une anesthésie rachidienne Introduction : La phénylephrine et l'éphedrine sont des substances vaso-actives utilisées de routine pour corriger des épisodes d'hypotension artérielle induits par l'anesthésie intrarachidienne. L'influence de ces deux vasopresseurs sur le flux sanguin cutané (FSC) dans ce contexte n'a jusqu'à maintenant pas été décrite. Cette étude évalue l'effet d'une injection intraveineuse de 75 µg de phénylephrine ou de 7.5 mg d'éphedrine sur le FSC mesuré par Laser Doppler, dans les zones concernées parle bloc sympathiqué induit par l'anesthésie intrarachidienne (membres inférieurs) et dans les zones non concernées (membres supérieurs). Méthode :Après acceptation par le Comité d'Éthique, et obtention de leur accord écrit, 20 patients devant subir une intervention chirurgicale élective en décubitus dorsal sous anesthésie. intrarachidienne ont été inclus dans cette étude randomisée en double insu. Le FSC a été mesuré en continu par deux sondes fixées l'une à la cuisse (zone avec bloc sympathique) et l'autre sur l'avantbras (zone sans bloc sympathique). Les valeurs de FSC ont été enregistrées après l'anesthésie rachidienne (valeur contrôle), puis après l'injection i.v. dè phénylephrine (10 patients) ou d'éphedrine (10 patients) pour corriger une hypotension définie comme une chute de 20 mmHg de la pression artérielle systolique. Les variations de FSC exprimées en pourcentage de la valeur contrôle moyenne (+/- écart type) ont été analysées par le test t de Student. Résultats :Les données démographiques des patients et le niveau sensitif induit par l'anesthésie rachidienne sont similaires dans les deux groupes. Aux doses utilisées, seule l'éphedrine restaure la pression artérielle aux valeurs précédant l'anesthésie rachidienne. La phénylephrine augmente le FSC de l'avant-bras de 44% (+/- 79%) et de la cuisse de 34% (+/-24%), alors que l'éphedrine diminue le débit sanguin cutané de l'avant-bras de 16% (+/- 15%) et de la cuisse de 22% (+/-11%). Conclusion : L'injection intraveineuse de phénylephrine et d'éphedrine ont des effets opposés sur le flux sanguin cutané, et cette réponse n'est pas modifiée par le bloc sympathique.. Cette différence peut s'expliquer par la distribution des sous-types de récepteurs adrénergiques alpha et leur prédominance relative dans les veines et les artères de différents diamètres perfusant le tissu sous-cutané et la peau. L'éphedrine, èn raison de sa meilleure efficacité pour traiter les épisodes d'hypotension artérielle après anesthésie intrarachidienne devrait être préféré à la phénylephrine, leurs effets opposés sur le flux sanguin cutané n'étant pas pertinents en pratique clinique. SUMMARY Background: Phenylephrine or ephedrine is routinely used to correct hypotensive episodes fallowing spinal anaesthesia (SA). The influence of these two vasopressors on skin blood flow (SBF) has not yet been described. We have therefore evaluated the effects of an i.v. bolus of 75 µg phenylephrine or 7.5 mg of ephedrine on SBF measured by laser Doppler flowmetry during sympathetic blockade induced by SA. Methods: With Ethical Committee approval and written consent, 20 patients scheduled for elective procedures in supine position under SA were enrolled in this double-blind randomized study. SBF was measured continuously by two probes fixed at the thigh (area with sympathic blockade) and forearm level (area without sympathic blockade) respectively. SBF values were recorded after SA (control values) and then after a bolus administration of phenylephriné (n=10) or ephedrine (n=10) when systolic blood pressure decreased by 20 mmHg. Changes were expressed as percentage of control SBF values and analysed by Student's paired t-test. Results: Patient characteristics and dermatomal sensory levels were similar in both groups. Phenylephrine increases mean SBF at the forearm level by 44% (79%) [mean (SD)j and at the thigh by 34% (24%). Ephedrine decreases SBF at the forearm level by 16% (15%) and at the thigh by 22% (il%). Ephedrine bolus restores arterial blood pressure to pre-anaesthesia values, whereas phenylephrine does not. Conclusion: Administratión of phenylephrine and ephedrine has opposite effects on skin blood flow and sympathetic blockade does not modify this response. These findings could be explained by the distribution of the alpha-adrenoréceptor subtypes and their relative predominance among veins and arteries of different size perfusing the subcutaneous tissue and the skin. Ephedrine, due to its better efficacy to correct hypotensive episodes following SA, should be preferred, to phenylephrine, their opposite effects on SBF being not relevant for clinical practice.
Resumo:
Evolutionary graph theory has been proposed as providing new fundamental rules for the evolution of co-operation and altruism. But how do these results relate to those of inclusive fitness theory? Here, we carry out a retrospective analysis of the models for the evolution of helping on graphs of Ohtsuki et al. [Nature (2006) 441, 502] and Ohtsuki & Nowak [Proc. R. Soc. Lond. Ser. B Biol. Sci (2006) 273, 2249]. We show that it is possible to translate evolutionary graph theory models into classical kin selection models without disturbing at all the mathematics describing the net effect of selection on helping. Model analysis further demonstrates that costly helping evolves on graphs through limited dispersal and overlapping generations. These two factors are well known to promote relatedness between interacting individuals in spatially structured populations. By allowing more than one individual to live at each node of the graph and by allowing interactions to vary with the distance between nodes, our inclusive fitness model allows us to consider a wider range of biological scenarios leading to the evolution of both helping and harming behaviours on graphs.
Resumo:
DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. The mode of plasmid DNA delivery is critical to make progress in DNA vaccination. Using human papillomavirus type 16 E7 as a model antigen, this study evaluated the effect of peptide-polymer hybrid including PEI600-Tat conjugate as a novel gene delivery system on the potency of antigen-specific immunity in mice model. At ratio of 10:50 PEI-Tat/E7DNA (w/w), both humoral and cellular immune responses were significantly enhanced as compared with E7DNA construct and induced Th1 response. Therefore, this new delivery system could have promising applications in gene therapy.
Resumo:
BACKGROUND: Prognosis prediction for resected primary colon cancer is based on the T-stage Node Metastasis (TNM) staging system. We investigated if four well-documented gene expression risk scores can improve patient stratification. METHODS: Microarray-based versions of risk-scores were applied to a large independent cohort of 688 stage II/III tumors from the PETACC-3 trial. Prognostic value for relapse-free survival (RFS), survival after relapse (SAR), and overall survival (OS) was assessed by regression analysis. To assess improvement over a reference, prognostic model was assessed with the area under curve (AUC) of receiver operating characteristic (ROC) curves. All statistical tests were two-sided, except the AUC increase. RESULTS: All four risk scores (RSs) showed a statistically significant association (single-test, P < .0167) with OS or RFS in univariate models, but with HRs below 1.38 per interquartile range. Three scores were predictors of shorter RFS, one of shorter SAR. Each RS could only marginally improve an RFS or OS model with the known factors T-stage, N-stage, and microsatellite instability (MSI) status (AUC gains < 0.025 units). The pairwise interscore discordance was never high (maximal Spearman correlation = 0.563) A combined score showed a trend to higher prognostic value and higher AUC increase for OS (HR = 1.74, 95% confidence interval [CI] = 1.44 to 2.10, P < .001, AUC from 0.6918 to 0.7321) and RFS (HR = 1.56, 95% CI = 1.33 to 1.84, P < .001, AUC from 0.6723 to 0.6945) than any single score. CONCLUSIONS: The four tested gene expression-based risk scores provide prognostic information but contribute only marginally to improving models based on established risk factors. A combination of the risk scores might provide more robust information. Predictors of RFS and SAR might need to be different.
Resumo:
Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed.Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.
Resumo:
Rationale: Aging adults represent the fastest growing population segment in many countries. Physiological and metabolic changes in the aging process may alter how aging adults respond to exposures compared to younger workers. Current preventive workplace exposure measures may therefore not be sufficiently protective for the aging workforce. In a controlled human toxicokinetic study (exposure chamber; 12m3), the volunteers (n=11) were men and women over the age of 58 years and exposed to a commonly used, low neurotoxic glycol ether; PGME (CAS no. 107-98- 2) (50 ppm, 6 hours). Oxidative metabolism (Michaelis-Menten) is the major pathway and conjugation the minor in humans. Metabolites, conjugated and free PGME are eliminated through the kidneys, and the elimination kinetics is dose-dependent (0 order). Scope: (1) compare the toxicokinetic profile of PGME obtained in the aging volunteers (58- 62 years) to young volunteers (20-25 years) from a previous study; (2) Test the predictive power of an existing PGME toxicokinetic compartment model for aging persons against urinary PGME concentrations found in volunteers from our experimental study. Experimental procedure: Urine samples were collected before, every 2-hour during exposures for six hours, and ad-lib for additional 20 hours. Urinary analysis of free and total PGME was performed using capillary GC/FID. The toxicokinetic model (Berkley Madonna software) was ageadjusted. Results. Urinary free and total PGME concentration rose rapidly, and did not reach an apparent plateau level during exposure. Less conjugation was observed in the older group. The predictive model developed for the young group predicted well total PGME in the aging group but not free PGME. The age adjusted toxicokinetic model's Vmax1 had to be changed for the aging group, implying slower enzymatic pathway. Conclusion: The toxicokinetic model did not predict well if only the physiological parameters were adjusted for aging adults (existing model); a substance specific metabolic rate parameter was also needed.
Resumo:
We modeled work performance as outcomes of individual-differences mediated by technical performance. Beyond the "usual suspects" (e.g., general mental ability, and personality), we also measured the ethical development of participants (n = 460). We surmised that ethical development - which has not been extensively studied as a predictor of work performance while controlling for established predictors - captures unique variance in both technical and work performance. Results demonstrated incremental validity for ethical development in predicting technical performance, which in turn predicted work performance. The indirect effect of ethical development was significant too. Our results highlight the importance of process models of performance, which include proximal as well as distal individual differences.
Resumo:
Introduction: The posterior inclination of the tibial component is an important factor that can affect the success of total knee arthroplasty. It can reduce the posterior impingement and thus increase the range of flexion, but it may also induce instability in flexion, anterior impingement between the polyethylene of postero-stabilizing knee prosthesis, and anterior conflict with the cortical bone and the stem. Although the problem is identified, there is still a debate on the ideal inclination angle and the surgical technique to avoid an excessive posterior inclination. The aim of this study was to predict the effect of a posterior inclination of the tibial component on the contact pattern on the tibial insert, using a numerical musculoskeletal model of the knee joint. Methods: A 3D finite element model of the knee joint was developed to simulate an active and loaded squat movement after total knee arthroplasty. Flexion was actively controlled by the quadriceps muscle and muscle activations were estimated from EMG data and were synchronized by a feedback algorithm. Two inclinations of the tibial tray were considered: a posterior inclination of 0° or 10°. During the entire range of flexion, the following quantities were calculated: the tibiofemoral and patello-femoral contact force, and the contact pattern on polyethylene insert. The antero-posterior displacement of the contact pattern was also measured. Abaqus 6.7 was used for all analyses. Results: The tibio-femoral and patello-femoral contact forces increased during flexion and reached respectively 4 and 7 BW (bodyweight) at 90° of flexion. They were slightly affected by the inclination of the tibial tray. Without posterior inclination, the contact pattern on the tibial insert remained centered. The contact pressure was lower than 5 MPa below 60° of flexion, but exceeded 20 MPa at 90° of flexion. The posterior inclination displaced the contact point posteriorly by 2 to 4 mm. Conclusion: The inclination of the tibial tray displaced the contactpattern towards the posterior border of the tibial insert. However, even for 10° of inclination, the contact center remained far from the posterior border (12 mm). There was no instability predicted for this movement.
Resumo:
Protein-ligand docking has made important progress during the last decade and has become a powerful tool for drug development, opening the way to virtual high throughput screening and in silico structure-based ligand design. Despite the flattering picture that has been drawn, recent publications have shown that the docking problem is far from being solved, and that more developments are still needed to achieve high successful prediction rates and accuracy. Introducing an accurate description of the solvation effect upon binding is thought to be essential to achieve this goal. In particular, EADock uses the Generalized Born Molecular Volume 2 (GBMV2) solvent model, which has been shown to reproduce accurately the desolvation energies calculated by solving the Poisson equation. Here, the implementation of the Fast Analytical Continuum Treatment of Solvation (FACTS) as an implicit solvation model in small molecules docking calculations has been assessed using the EADock docking program. Our results strongly support the use of FACTS for docking. The success rates of EADock/FACTS and EADock/GBMV2 are similar, i.e. around 75% for local docking and 65% for blind docking. However, these results come at a much lower computational cost: FACTS is 10 times faster than GBMV2 in calculating the total electrostatic energy, and allows a speed up of EADock by a factor of 4. This study also supports the EADock development strategy relying on the CHARMM package for energy calculations, which enables straightforward implementation and testing of the latest developments in the field of Molecular Modeling.
Resumo:
BACKGROUND AND PURPOSE: Endovascular treatment of wide-neck bifurcation aneurysms often results in incomplete occlusion or aneurysm recurrence. The goals of this study were to compare results of coil embolization with or without the assistance of self-expandable stents and to examine how stents may influence neointima formation. MATERIALS AND METHODS: Wide-neck bifurcation aneurysms were constructed in 24 animals and, after 4-6 weeks, were randomly allocated to 1 of 5 groups: 1) coil embolization using the assistance of 1 braided stent (n = 5); 2) coil embolization using the assistance of 2 braided stents in a Y configuration (n = 5); 3) coil embolization without stent assistance (n = 6); 4) Y-stenting alone (n = 4); and 5) untreated controls (n = 4). Angiographic results were compared at baseline and at 12 weeks, by using an ordinal scale. Neointima formation at the neck at 12 weeks was compared among groups by using a semiquantitative grading scale. Bench studies were performed to assess stent porosities. RESULTS: Initial angiographic results were improved with single stent-assisted coiling compared with simple coiling (P = .013). Angiographic results at 12 weeks were improved with any stent assistance (P = .014). Neointimal closure of the aneurysm neck was similar with or without stent assistance (P = .908), with neointima covering coil loops but rarely stent struts. Y-stent placement alone had no therapeutic effect. Bench studies showed that porosities can be decreased with stent compaction, but a relatively stable porous transition zone was a limiting factor. CONCLUSIONS: Stent-assisted coiling may improve results of embolization by allowing more complete initial coiling, but these high-porosity stents did not provide a scaffold for more complete neointimal closure of aneurysms.
Resumo:
ABSTRACT Fat oxidation kinetics: effect of exercise. During graded exercise, absolute whole body fat oxidation rates increase from low to moderate intensities, and then markedly decline at high intensities, implying an exercise intensity (Fatmax) at which the fat oxidation rate is maximal (MFO). The main aim of the present work was to examine the effect of exercise on whole body fat oxidation kinetics. For this purpose, a sinusoidal mathematical model (SIN) has been developped in the first study to provide an accurate description of the shape of fat oxidation kinetics during graded exercise, represented as a function of exercise intensity, and to determine Fatmax and MFO. The SIN model incorporates three independent variables (i.e., dilatation, symmetry, and translation) that correspond to main expected modulations of the basic fat oxidation curve because of factors such as mode of exercise or training status. The results of study 1 showed that the SIN model was a valuable tool to determine Fatmax and MFO, and to precisely characterize and quantify the different shape of fat oxidation kinetics through its three variables. The effectiveness of the SIN model to detect differences in fat oxidation kinetics induced by a specific factor was then confirmed in the second study, which quantitatively described and compared fat oxidation kinetics in two different popular modes of exercise: running and cycling. It was found that the mean fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with the symmetric parabolic curve in cycling. In the two subsequent studies, the effect of a prior endurance exercise of different intensities and durations on whole body fat oxidation kinetics was examined. Study 3 determined the impact of a 1-h continuous exercise bout at an exercise intensity corresponding to Fatmax on fat oxidation kinetics during a subsequent graded test, while study 4 investigated the effect of an exercise leading to a more pronounced muscle glycogen depletion. The results of these two latter studies showed that fat oxidation rates, MFO, and Fatmax were enhanced following endurance exercise, but were increased to a greater extent with a more severe mucle glycogen depletion, inducing therefore modifications in the postexercise fat oxidation kinetics (i.e., greater dilatation and rightward asymmetry). In perspective, further studies have been suggested 1) to assess physiological meaning of the three independent variables of the SIN model; and 2) to compare the effect of two different training programs on fat oxidation kinetics in obese subjects.
Resumo:
Isogenic Staphylococcus aureus strains with different capacities to produce sigma(B) activity were analyzed for their ability to attach to fibrinogen- or fibronectin-coated surfaces or platelet-fibrin clots and to cause endocarditis in rats. In comparison to the sigma(B)-deficient strain, BB255, which harbors an rsbU mutation, both rsbU-complemented and sigma(B)-overproducing derivatives exhibited at least five times greater attachment to fibrinogen- and fibronectin-coated surfaces and showed increased adherence to platelet-fibrin clots. No differences in adherence were seen between BB255 and a DeltarsbUVWsigB isogen. Northern blotting analyses revealed that transcription of clfA, encoding fibrinogen-binding protein clumping factor A, and fnbA, encoding fibronectin-binding protein A, were positively influenced by sigma(B). Sigma(B) overproduction resulted in a statistically significant increase in positive spleen cultures and enhanced bacterial densities in both the aortic vegetations and spleens at 16 h postinoculation. In contrast, at 72 h postinoculation, tissues infected with the sigma(B) overproducer had lower bacterial densities than did those infected with BB255. These results suggest that although sigma(B) appears to increase the adhesion of S. aureus to various host cell-matrix proteins in vitro, it has limited effect on pathogenesis in the rat endocarditis model. Sigma(B) appears to have a transient enhancing effect on bacterial density in the early stages of infection that is lost during progression.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Introduction: Several methods have already been proposed to improve the mobility of reversed prostheses (lateral or inferior displacement, increase of the glenosphere size). However, the effect of these design changes have only been evaluated on the maximal range of motion and were not related to activities of daily living (ADL). Our aim was thus to measure the effect of these design changes and to relate it to 4 typical ADL. Methods: CT data were used to reconstruct a accurate geometric model of the scapula and humerus. The Aequalis reversed prosthesis (Tornier) was used. The mobility of a healthy shoulder was compared to the mobility of 4 different reversed designs: 36 and 42 mm glenospheres diameters, inferior (4 mm) and lateral (3.2 mm) glenospheres displacements. The complete mobility map of the prosthesis was compared to kinematics measurement on healthy subjects for 4 ADL: 1) hand to contra lateral shoulder, 2) hand to mouth, 3) combing hair, 4) hand to back pocket. The results are presented as percentage of the allowed movement of the prosthestic shouder relative to the healthy shoulder, considered as the control group. Results: None of the tested designs allowed to recover a full mobility. The differences of allowed range of motion among each prosthetic designs appeared mainly in two of the 4 movements: hand to back pocket and hand to contra lateral shoulder. For the hand to back pocket, the 36 had the lowest mobility range, particularly for the last third of the movement. The 42 appeared to be a good compromise for all ADL activities. Conclusion: Reverse shoulder prostheses does not allow to recover a full range of motion compared to healthy shoulders, even for ADL. The present study allowed to obtain a complete 3D mobility map for several glenosphere positions and sizes, and to relate it to typical ADL. We mainly observed an improved mobility with inferior displacement and increased glenosphere size. We would suggest to use larger glenosphere, whenever it is possible.
Resumo:
Résumé Fondement : le développement de solutions d'hydroxy-éthyl-amidons (HEAS) avec peu d'impact sur la coagulation sanguine, mais un effet supérieur sur la volémie, par comparaison aux HEAS couramment utilisés, est d'un grand intérêt clinique. Nous posons l'hypothèse que des solutions de haut poids moléculaire et de bas degré de substitution possèdent ces caractéristiques. Méthode : trente porcs ont été perfusés avec trois HEAS différents (20 ml/kg) de même degré de substitution (0.42) mais de poids moléculaire différent (130, 500 et 900 kDa). Une série de prélèvements sanguins ont été effectués sur 24 heures, sur lesquels des analyses de coagulation sanguine étaient effectuées par thromboélastographie et dosages plasmatiques. De plus, la concentration plasmatique ainsi que le poids moléculaire in vivo ont été déterminés, ainsi que des paramètres de pharmacocinétiques, ceci en se basant sur un modèle bi-compartimental. Résultats : les analyses de thromboélastographie et les tests de coagulation plasmatique n'ont pas démontré d'altération plus marquée de la coagulation sanguine après l'utilisation des solutions des HAES 500 et HAES 900, par comparaison avec celle de HAES 130. Par contre, les HAES 500 et HAES 900 ont présenté une plus grande aire sous la courbe (area under the curve), dans la relation concentration en fonction du temps [1542 (142) g min litre-1, p<0.001, 1701 (321) g min litre-1, p<0.001] par rapport au HAES 130 [1156 (223) g min litre-1]. La demi-vie alpha (t ½α) était plus longue pour les HAES 500 [53.8 (8.6) min, p<0.01] et HAES 900 [57.1 (12.3) min, p<0.01 ]que pour le HAES 130 [39.9 (10.7) min]. La demi-vie beta (t½β) était par contre similaire pour les trois types de HAES [de 332 (100) à 381 (63) min]. Conclusions : pour les HAES de bas degré de substitution, le poids moléculaire n'est pas un facteur clé en ce qui concerne l'altération de la coagulation. La persistance intravasculaire initialement plus longue des HAES de haut poids moléculaire et bas degré de substitution pourrait résulter dans un plus long effet volémique de ces substances. Abstract Background: The development of hydroxyethyl starches (HES) with low impact on blood coagulation but higher volume effect compared with the currently used HES solutions is of clinical interest. We hypothesized that high molecular weight, low-substituted HES might possess these properties. Methods: Thirty pigs were infused with three different HES solutions (20 ml kg-1) with the same degree of molar substitution (0.42) but different molecular weights (130, 500 and 900 kDa). Serial blood samples were taken over 24 h and blood coagulation was assessed by Thromboelastograph® analysis and analysis of plasma coagulation. In addition, plasma concentration and in vivo molecular weight were determined and pharmacokinetic data were computed based on a two-compartment model. Results: Thromboelastograph analysis and plasma coagulation tests did not reveal a more pronounced alteration of blood coagulation with HES 500 and HES 900 compared with HES 130. In contrast, HES 500 and HES 900 had a greater area under the plasma concentration-time curve [1542 (142) g min litre-1, P<0.001, 1701 (321) g min litre-1, P<0.001] than HES 130 [I 156 (223) g min litre-1] and alpha half life (t ½α) was longer for HES 500 [53.8 (8.6) min, P<0.01 ] and HES 900 [57. I (I 2.3) min, P<0.01 ] than for HES 130 [39.9 (I 0.7) min]. Beta half life (t½β), however, was similar for all three types of HES [from 332 (100) to 381 (63) min]. Conclusions. In low-substituted HES, molecular weight is not a key factor in compromising blood coagulation. The longer initial intravascular persistence of high molecular weight lowsubstituted HES might result in a longer lasting volume effect.