127 resultados para Local binary pattern
Resumo:
INTRODUCTION: Persistent atrial fibrillation (AF) ablation may lead to partial disconnection of the coronary sinus (CS). As a result, disparate activation sequences of the local CS versus contiguous left atrium (LA) may be observed during atrial tachycardia (AT). We aimed to evaluate the prevalence of this phenomenon and its impact on activation mapping. METHODS: AT occurring after persistent AF ablation were investigated in 74 consecutive patients. Partial CS disconnection during AT was suspected when double potentials with disparate activation sequences were observed on the CS catheter. Endocardial mapping facing CS bipoles was performed to differentiate LA far-field from local CS potentials. RESULTS: A total of 149 ATs were observed. Disparate LA-CS activations were apparent in 20 ATs after magnifying the recording scale (13%). The most common pattern (90%) was distal to proximal endocardial LA activation against proximal to distal CS activation, the latter involving the whole CS or its distal part. Perimitral macroreentry was more common when disparate LA-CS activations were observed (67% vs 29%; P = 0.002). Partial CS disconnection also resulted in "pseudo" mitral isthmus (MI) block during LA appendage pacing in 20% of patients as local CS activation was proximal to distal despite distal to proximal activation of the contiguous LA. CONCLUSION: Careful analysis of CS recordings during AT following persistent AF ablation often reveals disparate patterns of activation. Recognizing when endocardial LA activation occurs in the opposite direction to the more obvious local CS signals is critical to avoid misleading interpretations during mapping of AT and evaluation of MI block.
Resumo:
OBJECTIVES/HYPOTHESIS: Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. METHODS: Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. RESULTS: This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. CONCLUSIONS: GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.
Resumo:
Background: In human skin, local heating produces local vasodilatation, a response termed thermal hyperemia. Thermal hyperemia is largely mediated by nitric oxide (NO). It is blunted on repeat stimulations applied to the same skin spot, a phenomenon termed desensitization. As this phenomenon could reflect a desensitization in the vasodilator effects of NO, we investigated whether a prior exposure to exogenous NO would result in an attenuated vasodilatory response to a subsequent thermal challenge. Methods: Thirteen healthy young men were studied. Skin blood flow (SkBF) was mesured on forearm skin with laser Doppler imaging. Exposure to exogenous NO was carried out by iontophoresis of sodium nitroprusside (SNP), a donor of NO. A local thermal stimulus (temperature step from 34 to 41°C maintained for 30 minutes) was applied with temperature-controlled chambers. We tested the influence of a previous transient exposure to exogenous NO on : 1) thermal hyperemia and 2) the response to a second identical exposure to exogeneous NO. Results: Thermal hyperemia (plateau SkBF at 30 minutes minus SkBF at 34°C) obtained on a site preexposed to exogenous NO two hours before was lower than obtained on a site preexposed to iontophoretic current only (mean±SD 395±139 perfusion units [PU] vs 540±79 PU ; p<0.01). When repeated on the same skin site two hours after the first one, exposure to exogenous NO led to a blunted vasodilatory response (298±121 PU vs 394±92 PU), although this difference was not statistically significant (p≈0.09). Conclusion: In forearm human skin, prior exposure to exogenous NO partially inhibits thermal hyperemia. These data support that desensitization of thermal hyperemia depends on a downregulation of the NO-cGMP pathway, possibly downstream from the endogenous production of NO.
Resumo:
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin-based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin-based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.
Resumo:
Aim This study compares the direct, macroecological approach (MEM) for modelling species richness (SR) with the more recent approach of stacking predictions from individual species distributions (S-SDM). We implemented both approaches on the same dataset and discuss their respective theoretical assumptions, strengths and drawbacks. We also tested how both approaches performed in reproducing observed patterns of SR along an elevational gradient.Location Two study areas in the Alps of Switzerland.Methods We implemented MEM by relating the species counts to environmental predictors with statistical models, assuming a Poisson distribution. S-SDM was implemented by modelling each species distribution individually and then stacking the obtained prediction maps in three different ways - summing binary predictions, summing random draws of binomial trials and summing predicted probabilities - to obtain a final species count.Results The direct MEM approach yields nearly unbiased predictions centred around the observed mean values, but with a lower correlation between predictions and observations, than that achieved by the S-SDM approaches. This method also cannot provide any information on species identity and, thus, community composition. It does, however, accurately reproduce the hump-shaped pattern of SR observed along the elevational gradient. The S-SDM approach summing binary maps can predict individual species and thus communities, but tends to overpredict SR. The two other S-SDM approaches the summed binomial trials based on predicted probabilities and summed predicted probabilities - do not overpredict richness, but they predict many competing end points of assembly or they lose the individual species predictions, respectively. Furthermore, all S-SDM approaches fail to appropriately reproduce the observed hump-shaped patterns of SR along the elevational gradient.Main conclusions Macroecological approach and S-SDM have complementary strengths. We suggest that both could be used in combination to obtain better SR predictions by following the suggestion of constraining S-SDM by MEM predictions.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.
Resumo:
BACKGROUND: Animal societies are diverse, ranging from small family-based groups to extraordinarily large social networks in which many unrelated individuals interact. At the extreme of this continuum, some ant species form unicolonial populations in which workers and queens can move among multiple interconnected nests without eliciting aggression. Although unicoloniality has been mostly studied in invasive ants, it also occurs in some native non-invasive species. Unicoloniality is commonly associated with very high queen number, which may result in levels of relatedness among nestmates being so low as to raise the question of the maintenance of altruism by kin selection in such systems. However, the actual relatedness among cooperating individuals critically depends on effective dispersal and the ensuing pattern of genetic structuring. In order to better understand the evolution of unicoloniality in native non-invasive ants, we investigated the fine-scale population genetic structure and gene flow in three unicolonial populations of the wood ant F. paralugubris. RESULTS: The analysis of geo-referenced microsatellite genotypes and mitochondrial haplotypes revealed the presence of cryptic clusters of genetically-differentiated nests in the three populations of F. paralugubris. Because of this spatial genetic heterogeneity, members of the same clusters were moderately but significantly related. The comparison of nuclear (microsatellite) and mitochondrial differentiation indicated that effective gene flow was male-biased in all populations. CONCLUSION: The three unicolonial populations exhibited male-biased and mostly local gene flow. The high number of queens per nest, exchanges among neighbouring nests and restricted long-distance gene flow resulted in large clusters of genetically similar nests. The positive relatedness among clustermates suggests that kin selection may still contribute to the maintenance of altruism in unicolonial populations if competition occurs among clusters.
Resumo:
The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide-field fluorescence, confocal and two-photon microscopes.
Resumo:
Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.
Resumo:
AIM: To report on trans-scleral local resection of choroidal melanoma for exudative retinal detachment and neovascular glaucoma (toxic tumour syndrome) after proton beam radiotherapy (PBR). METHODS: A non-randomised, prospective study of secondary trans-scleral local resection of choroidal melanoma for exudative retinal detachment with or without neovascular glaucoma after PBR. The patients were treated at the Liverpool Ocular Oncology Centre between February 2000 and April 2008. The trans-scleral local resection was performed with a lamellar-scleral flap, using systemic hypotension to reduce haemorrhage. RESULTS: 12 patients (six women, six men) with a mean age of 51 years (range 20-75) were included in this study. The tumour margins extended anterior to ora serrata in six patients. On ultrasonography, the largest basal tumour dimension averaged 12.4 mm (range 6.8-18.1) and the tumour height averaged 7.1 mm (range 4.2-10.7). The retinal detachment was total in seven patients. Neovascular glaucoma was present in four patients. The time between PBR and local resection had a mean of 17.4 months (range 1-84). The ophthalmic follow-up time after the local resection had a mean of 46.2 months (range 14-99). At the latest known status, the eye was conserved in 10 patients, with a flat retina in all these patients and visual acuity equal or better than 6/30 in four patients. The reasons for enucleation were: patient request for enucleation when rhegmatogenous retinal detachment complicated the resection (one patient) and phthisis (one patient). CONCLUSIONS: Exudative retinal detachment, rubeosis and neovascular glaucoma after PBR of a choroidal melanoma can resolve after trans-scleral local resection of the tumour. Our findings suggest that these complications are caused by the persistence of the irradiated tumour within the eye ('toxic tumour syndrome').