192 resultados para Liver sinusoidal endothelial cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles (NPs) have gained a lot of interest in recent years due to their huge potential for applications in industry and medicine. Their unique properties offer a large number of attractive possibilities in the biomedical field, providing innovative tools for diagnosis of diseases and for novel therapies. Nevertheless, a deep understanding of their interactions with living tissues and the knowledge about their possible effects in the human body are necessary for the safe use of nanoparticulate formulations. The aim of this PhD project was to study in detail the interactions of therapeutic NPs with living cells, including cellular uptake and release, cellular localization and transport across the cell layers. Moreover, the effects of NPs on the cellular metabolic processes were determined using adapted in vitro assays. We evaluated the biological effect of several NPs potentially used in the biomedical field, including titanium dioxide (Ti02) NPs, 2-sized fluorescent silica NPs, ultrasmall superparamagnetic iron oxide (USPIO) NPs, either uncoated or coated with oleic acid or with polyvinylamine (aminoPVA) and poly(lactic-co-glycolic acid) - polyethylene-oxide (PLGA-PEO) NPs. We have found that the NPs were internalized by the cells, depending on their size, chemical composition, surface coating and also depending on the cell line considered. The uptake of aminoPVA-coated USPIO NPs by endothelial cells was enhanced in the presence of an external magnetic field. None of the tested USPIO NPs and silica NPs was transported across confluent kidney cell layers or brain endothelial cell layers, even in the presence of a magnetic field. However, in an original endothelium-glioblastoma barrier model which was developed, uncoated USPIO NPs were directly transferred from endothelial cells to glioblastoma cells. Following uptake, Ti02 NPs and uncoated USPIO NPs were released by the kidney cells, but not by the endothelial cells. Furthermore, these NPs induced an oxidative stress and autophagy in brain endothelial cells, possibly associated with their enhanced agglomeration in cell medium. A significant DNA damage was found in brain endothelial cells after their exposure to TiO2NPs. Altogether these results extend the existing knowledge about the effects of NPs on living cells with regard to their physicochemical characteristics and provide interesting tools for further investigation. The development of the in vitro toxicological assays with a special consideration for risk evaluation aims to reduce the use of animal experiments. -Les nanoparticules (NPs) présentent beaucoup d'intérêt dans le domaine biomédical et industriel. Leurs propriétés uniques offrent un grand nombre de possibilités de solutions innovantes pour le diagnostique et la thérapie. Cependant, pour un usage sûr des NPs il est nécessaire d'acquérir une connaissance approfondie des mécanismes d'interactions des NPs avec les tissus vivants et de leur effets sur le corps humain. Le but de ce projet de thèse était d'étudier en détail les mécanismes d'interactions de NPs thérapeutiques avec des cellules vivantes, en particulier les mécanismes d'internalisation cellulaire et leur subséquente sécrétion par les cellules, leur localisation cellulaire, leur transport à travers des couches cellulaires, et l'évaluation des effets de NPs sur le métabolisme cellulaire, en adaptant les méthodes existante d'évaluation cyto-toxico logique s in vitro. Pour ces expériences, les effets biologiques de nanoparticules d'intérêt thérapeutique, telles que des NPs d'oxyde de titane (TiO2), des NPs fluorescents de silicate de 2 tailles différentes, des NPs, d'oxyde de fer super-para-magnétiques ultra-petites (USPIO), soit non- enrobées soit enrobées d'acide oléique ou de polyvinylamine (aminoPVA), et des NPs d'acide poly(lactique-co-glycolique)-polyethylene-oxide (PLGA-PEO) ont été évalués. Les résultats ont démontré que les NPs sont internalisées par les cellules en fonction de leur taille, composition chimique, enrobage de surface, et également du type de cellules utilisées. L'internalisation cellulaire des USPIO NPs a été augmentée en présence d'un aimant externe. Aucune des NPs de fer et de silicate n'a été transportée à travers des couches de cellules épithéliales du rein ou endothéliales du cerveau, même en présence d'un aimant. Cependant, en développant un modèle original de barrière endothélium-glioblastome, un transfert direct de NPs d'oxyde de fer de cellule endothéliale à cellule de glioblastome a été démontré. A la suite de leur internalisation les NPs d'oxyde de fer et de titane sont relâchées par des cellules épithéliales du rein, mais pas des cellules endothéliales du cerveau. Dans les cellules endothéliales du cerveau ces NPs induisent en fonction de leur état d'agglomération un stress oxydatif et des mécanismes d'autophagie, ainsi que des dommages à l'ADN des cellules exposées aux NPs d'oxyde de titane. En conclusion, les résultats obtenus élargissent les connaissances sur les effets exercés par des NPs sur des cellules vivantes et ont permis de développer les outils expérimentaux pour étudier ces effets in vitro, réduisant ainsi le recours à des expériences sur animaux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cells move randomly ("random-walk"), a characteristic thought to be integral to their function. Using migration assays and time-lapse microscopy, we found that CD8+ T cells lacking the lymph node homing receptors CCR7 and CD62L migrate more efficiently in transwell assays, and that these same cells are characterized by a high frequency of cells exhibiting random crawling activity under culture conditions mimicking the interstitial/extravascular milieu, but not when examined on endothelial cells. To assess the energy efficiency of cells crawling at a high frequency, we measured mRNA expression of genes key to mitochondrial energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1beta [PGC-1beta], estrogen-related receptor alpha [ERRalpha], cytochrome C, ATP synthase, and the uncoupling proteins [UCPs] UCP-2 and -3), quantified ATP contents, and performed calorimetric analyses. Together these assays indicated a high energy efficiency of the high crawling frequency CD8+ T-cell population, and identified differentially regulated heat production among nonlymphoid versus lymphoid homing CD8+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most efficient antigen presenting cells, they provide co-stimulation, are able to secrete various proinflammatory cytokines and therefore play a pivotal role in shaping adaptive immune responses. Moreover, they are important for the promotion and maintenance of central and peripheral tolerance through several mechanisms like the induction of anergy or apoptosis in effector T cells or by promoting regulatory T cells. The murine CD8α+ (MuTu) dendritic cell line was previously derived and described in our laboratory. The MuTu cell line has been shown to maintain phenotypical and functional characteristics of endogenous CD8α+ DCs. They are able to cross-present exogenous antigens to CD8+ T cells and produce interleukin (IL-) 12 upon engagement of Toll like receptors. The cell line constitutes an infinite source of homogenous, phenotypically well-defined dendritic cells. This allows us to investigate the role and potential of specific molecules in the induction as well as regulation of immune responses by DCs in a rational and standardized way. In a first project the MuTu dendritic cell line was transduced in order to stably express the immunosuppressive molecules IL-10, IL-35 or the active form of TGF-β (termed IL-10+DC, IL-35+DC or actTGFβ+DC). We investigated the capability of these potentially suppressive or tolerogenic dendritic cell lines to induce immune tolerance and explore the mechanisms behind tolerance induction. The expression of TGF-β by the DC line did not affect the phenotype of the DCs itself. In contrast, IL-10+ and IL-35+DCs were found to exhibit lower expression of co-stimulatory molecules and MHC class I and II, as well as reduced secretion of pro-inflammatory cytokines upon activation. In vitro co-culture with IL-35+, IL10+ or active TGFβ+ DCs interfered with function and proliferation of CD4+ and CD8+ T cells. Furthermore, IL-35 and active TGF-β expressing DC lines induced regulatory phenotype on CD4+ T cells in vitro without or with expression of Foxp3, respectively. In different murine cancer models, vaccination with IL-35 or active TGF-β expressing DCs resulted in faster tumor growth. Interestingly, accelerated tumor growth could be observed when IL-35-expressing DCs were injected into T cell-deficient RAG-/- mice. IL-10expressing DCs however, were found to rather delay tumor growth. Besides the mentioned autocrine effects of IL-35 expression on the DC line itself, we surprisingly observed that the expression of IL-35 or the addition of IL-35 containing medium enhances neutrophil survival and induces proliferation of endothelial cells. Our findings indicate that the cytokine IL-35 might not only be a potent regulator of adaptive immune responses, but it also implies IL-35 to mediate diverse effects on an array of cellular targets. This abilities make IL-35 a promising target molecule not only for the treatment of auto-inflammatory disease but also to improve anti-cancer immunotherapies. Indeed, by applying active TGFβ+ in murine autoimmune encephalitis we were able to completely inhibit the development of the disease, whereas IL-35+DCs reduced disease incidence and severity. Furthermore, the preventive transfer of IL-35+DCs delayed rejection of transplanted skin to the same extend as the combination of IL-10/actTGF-β expressing DCs. Thus, the expression of a single tolerogenic molecule can be sufficient to interfere with the adequate activation and function of dendritic cells and of co-cultured T lymphocytes. The respective mechanisms of tolerance induction seem to be different for each of the investigated molecule. The application of a combination of multiple tolerogenic molecules might therefore evoke synergistic effects in order to overcome (auto-) immunity. In a second project we tried to improve the immunogenicity of dendritic cell-based cancer vaccines using two different approaches. First, the C57BL/6 derived MuTu dendritic cell line was genetically modified in order to express the MHC class I molecule H-2Kd. We hypothesized that the expression of BALB/c specific MHC class I haplotype (H-2Kd) should allow the priming of tumor-specific CD8+ T cells by the otherwise allogeneic dendritic cells. At the same time, the transfer of these H-2Kd+ DCs into BALB/c mice was thought to evoke a strong inflammatory environment that might act as an "adjuvant", helping to overcome tumor induced immune suppression. Using this so called "semi-allogeneic" vaccination approach, we could demonstrate that the delivery of tumor lysate pulsed H-2Kd+ DCs significantly delayed tumor growth when compared to autologous or allogeneic vaccination. However, we were not able to coherently elucidate the cellular mechanisms underlying the observed effect. Second, we generated MuTu DC lines which stably express the pro-inflammatory cytokines IL-2, IL-12 or IL-15. We investigated whether the combination of DC vaccination and local delivery of pro-inflammatory cytokines might enhance tumor specific T cell responses. Indeed, we observed an enhanced T cell proliferation and activation when they were cocultured in vitro with IL-12 or IL-2-expressing DCs. But unfortunately we could not observe a beneficial or even synergistic impact on tumor development when cytokine delivery was combined with semi-allogeneic DC vaccination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Remodeling of quiescent vessels with increases in permeability, vasodilatation, and edema are hallmarks of inflammatory disorders. Factors involved in this type of remodeling represent potential therapeutic targets. OBJECTIVES: We investigated whether the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) β/δ, a regulator of metabolism, fibrosis, and skin homeostasis, is involved in regulation of this type of remodeling. METHODS: Wild-type and various Pparb/d mutant mice were used to monitor dermal acute vascular hyperpermeability (AVH) and passive systemic anaphylaxis-induced hypothermia and edema. PPARβ/δ-dependent kinase activation and remodeling of endothelial cell-cell junctions were addressed by using human endothelial cells. RESULTS: AVH and dilatation of dermal microvessels stimulated by vascular endothelial growth factor A, histamine, and thrombin are severely compromised in PPARβ/δ-deficient mice. Selective deletion of the Pparb/d-encoding gene in endothelial cells in vivo similarly limits dermal AVH and vasodilatation, providing evidence that endothelial PPARβ/δ is the major player in regulating acute dermal microvessel remodeling. Furthermore, endothelial PPARβ/δ regulatory functions are not restricted to the skin vasculature because its deletion in the endothelium, but not in smooth muscle cells, also leads to reduced systemic anaphylaxis, the most severe form of allergic reaction, in which an acute vascular response plays a key role. PPARβ/δ-dependent AVH activation likely involves the activation of mitogen-activated protein kinase and Akt pathways and leads to downstream destabilization of endothelial cell-cell junctions. CONCLUSION: These results unveil not only a novel function of PPARβ/δ as a direct regulator of acute vessel permeability and dilatation but also provide evidence that antagonizing PPARβ/δ represents an important strategy to consider for moderating diseases with altered endothelial integrity, such as acute inflammatory and allergic disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Connexin37 (Cx37) and Cx40 are crucial for endothelial cell-cell communication and homeostasis. Both connexins interact with endothelial nitric oxide synthase (eNOS). The exact contribution of these interactions to the regulation of vascular tone is unknown. RESULTS: Cx37 and Cx40 were expressed in close proximity to eNOS at cell-cell interfaces of mouse aortic endothelial cells. Absence of Cx37 did not affect expression of Cx40 and a 50 % reduction of Cx40 in Cx40(+/-) aortas did not affect the expression of Cx37. However, absence of Cx40 was associated with reduced expression of Cx37. Basal NO release and the sensitivity for ACh were decreased in Cx37(-/-) and Cx40(-/-) aortas but not in Cx40(+/-) aortas. Moreover, ACh-induced release of constricting cyclooxygenase products was present in WT, Cx40(-/-) and Cx40(+/-) aortas but not in Cx37(-/-) aortas. Finally, agonist-induced NO-dependent relaxations and the sensitivity for exogenous NO were not affected by genotype. CONCLUSIONS: Cx37 is more markedly involved in basal NO release, release of cyclooxygenase products and the regulation of the sensitivity for ACh as compared to Cx40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lymphatic vasculature is important for the regulation of tissue fluid homeostasis, immune response, and lipid absorption, and the development of in vitro models should allow for a better understanding of the mechanisms regulating lymphatic vascular growth, repair, and function. Here we report isolation and characterization of lymphatic endothelial cells from human intestine and show that intestinal lymphatic endothelial cells have a related but distinct gene expression profile from human dermal lymphatic endothelial cells. Furthermore, we identify liprin beta1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, as highly expressed in intestinal lymphatic endothelial cells in vitro and lymphatic vasculature in vivo, and show that it plays an important role in the maintenance of lymphatic vessel integrity in Xenopus tadpoles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by known signaling and transcriptional mechanisms. The ongoing elaboration of vessels to form a network is less well understood. This involves cell polarization, coordinated migration, adhesion, mixing, regression, and shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. A mutation in polycystic kidney disease 1a was responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial lymphatic precursor sprouting is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice has no effect on precursor sprouting but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation, and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiogenesis, the process of generating new blood vessels, is essential to embryonic development, organ formation, tissue regeneration and remodeling, reproduction and wound healing. Also, it plays an important role in many pathological conditions, including chronic inflammation and cancer. Angiogenesis is regulated by a complex interplay of growth factors, inflammatory mediators, adhesion molecules, morphogens and guidance molecules. Transcription factor SOX18 is transiently expressed in nascent endothelial cells during embryonic development and postnatal angiogenesis, but little is known about signaling pathways controlling its expression. The aim of this study was to investigate whether pro-angiogenic molecules and pharmacological inhibitors of angiogenesis modulate SOX18 expression in endothelial cells. Therefore, we treated human umbilical vein endothelial cells (HUVEC) with angiogenic factors, extracellular matrix proteins, inflammatory cytokines and nonsteroidal anti-inflammatory drugs (NSAID) and monitored SOX18 expression. We have observed that the angiogenic factor VEGF and the inflammatory cytokine TNF increase, while the NSAID ibuprofen and NS398 decrease the SOX18 protein level. These results for the first time demonstrate that SOX18 expression is modulated by factors and drugs known to positively or negatively regulate angiogenesis. This opens the possibility of pharmacological manipulation of SOX18 gene expression in endothelial cells to stimulate or inhibit angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms of blood vessel maturation into distinct parts of the blood vasculature such as arteries, veins, and capillaries have been the subject of intense investigation over recent years. In contrast, our knowledge of lymphatic vessel maturation is still fragmentary. In this study, we provide a molecular and morphological characterization of the major steps in the maturation of the primary lymphatic capillary plexus into collecting lymphatic vessels during development and show that forkhead transcription factor Foxc2 controls this process. We further identify transcription factor NFATc1 as a novel regulator of lymphatic development and describe a previously unsuspected link between NFATc1 and Foxc2 in the regulation of lymphatic maturation. We also provide a genome-wide map of FOXC2-binding sites in lymphatic endothelial cells, identify a novel consensus FOXC2 sequence, and show that NFATc1 physically interacts with FOXC2-binding enhancers. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunotherapy is being proposed to treat patients with hepatocellular carcinoma (HCC). However, more detailed knowledge on tumor Ag expression and specific immune cells is required for the preparation of highly targeted vaccines. HCC express a variety of tumor-specific Ags, raising the question whether CTL specific for such Ags exist in HCC patients. Indeed, a recent study revealed CTLs specific for two cancer-testis (CT) Ags (MAGE-A1 and MAGE-A3) in tumor infiltrating lymphocytes of HCC patients. Here we assessed the presence of T cells specific for additional CT Ags: MAGE-A10, SSX-2, NY-ESO-1, and LAGE-1, which are naturally immunogenic as demonstrated in HLA-A2(+) melanoma patients. In two of six HLA-A2(+) HCC patients, we found that MAGE-A10- and/or SSX-2-specific CD8(+) T cells naturally responded to the disease, because they were enriched in tumor lesions but not in nontumoral liver. Isolated T cells specifically and strongly killed tumor cells in vitro, providing evidence that these CTL were selected in vivo for high avidity Ag recognition. Therefore, besides melanoma, HCC is the second solid human tumor with clear evidence for in vivo tumor recognition by T cells, providing the rational for specific immunotherapy, based on immunization with CT Ags such as MAGE-A10 and SSX-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon agonist stimulation, endothelial cells trigger smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). Endothelial cells of mouse aorta are interconnected by gap junctions made of connexin40 (Cx40) and connexin37 (Cx37), allowing the exchange of signaling molecules to coordinate their activity. Wild-type (Cx40(+/+)) and hypertensive Cx40-deficient mice (Cx40(-/-)), which also exhibit a marked decrease of Cx37 in the endothelium, were used to investigate the link between the expression of endothelial connexins (Cx40 and Cx37) and endothelial nitric oxide synthase (eNOS) expression and function in the mouse aorta. With the use of isometric tension measurements in aortic rings precontracted with U-46619, a stable thromboxane A(2) mimetic, we first demonstrate that ACh- and ATP-induced endothelium-dependent relaxations solely depend on NO release in both Cx40(+/+) and Cx40(-/-) mice, but are markedly weaker in Cx40(-/-) mice. Consistently, both basal and ACh- or ATP-induced NO production were decreased in the aorta of Cx40(-/-) mice. Altered relaxations and NO release from aorta of Cx40(-/-) mice were associated with lower expression levels of eNOS in the aortic endothelium of Cx40(-/-) mice. Using immunoprecipitation and in situ ligation assay, we further demonstrate that eNOS, Cx40, and Cx37 tightly interact with each other at intercellular junctions in the aortic endothelium of Cx40(+/+) mice, suggesting that the absence of Cx40 in association with altered Cx37 levels in endothelial cells from Cx40(-/-) mice participate to the decreased levels of eNOS. Altogether, our data suggest that the endothelial connexins may participate in the control of eNOS expression levels and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE(-/-) mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE(-/-) mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Oral temozolomide has shown similar efficacy to dacarbazine in phase III trials with median progression-free survival (PFS) of 2.1 months. Bevacizumab has an inhibitory effect on the proliferation of melanoma and sprouting endothelial cells. We evaluated the addition of bevacizumab to temozolomide to improve efficacy in stage IV melanoma. PATIENTS AND METHODS: Previously untreated metastatic melanoma patients with Eastern Cooperative Oncology Group performance status of two or more were treated with temozolomide 150 mg/m(2) days 1-7 orally and bevacizumab 10 mg/kg body weight i.v. day 1 every 2 weeks until disease progression or unacceptable toxicity. The primary end point was disease stabilisation rate [complete response (CR), partial response (PR) or stable disease (SD)] at week 12 (DSR12); secondary end points were best overall response, PFS, overall survival (OS) and adverse events. RESULTS: Sixty-two patients (median age 59 years) enrolled at nine Swiss centres. DSR12 was 52% (PR: 10 patients and SD: 22 patients). Confirmed overall response rate was 16.1% (CR: 1 patient and PR: 9 patients). Median PFS and OS were 4.2 and 9.6 months. OS (12.0 versus 9.2 months; P = 0.014) was higher in BRAF V600E wild-type patients. CONCLUSIONS: The primary end point was surpassed showing promising activity of this bevacizumab/temozolomide combination with a favourable toxicity profile. Response and OS were significantly higher in BRAF wild-type patients.