78 resultados para LIQUID CRYSTAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review presents the evolution of steroid analytical techniques, including gas chromatography coupled to mass spectrometry (GC-MS), immunoassay (IA) and targeted liquid chromatography coupled to mass spectrometry (LC-MS), and it evaluates the potential of extended steroid profiles by a metabolomics-based approach, namely steroidomics. Steroids regulate essential biological functions including growth and reproduction, and perturbations of the steroid homeostasis can generate serious physiological issues; therefore, specific and sensitive methods have been developed to measure steroid concentrations. GC-MS measuring several steroids simultaneously was considered the first historical standard method for analysis. Steroids were then quantified by immunoassay, allowing a higher throughput; however, major drawbacks included the measurement of a single compound instead of a panel and cross-reactivity reactions. Targeted LC-MS methods with selected reaction monitoring (SRM) were then introduced for quantifying a small steroid subset without the problems of cross-reactivity. The next step was the integration of metabolomic approaches in the context of steroid analyses. As metabolomics tends to identify and quantify all the metabolites (i.e., the metabolome) in a specific system, appropriate strategies were proposed for discovering new biomarkers. Steroidomics, defined as the untargeted analysis of the steroid content in a sample, was implemented in several fields, including doping analysis, clinical studies, in vivo or in vitro toxicology assays, and more. This review discusses the current analytical methods for assessing steroid changes and compares them to steroidomics. Steroids, their pathways, their implications in diseases and the biological matrices in which they are analysed will first be described. Then, the different analytical strategies will be presented with a focus on their ability to obtain relevant information on the steroid pattern. The future technical requirements for improving steroid analysis will also be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reversed phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the gold standard technique in bioanalysis. However, hydrophilic interaction chromatography (HILIC) could represent a viable alternative to RPLC for the analysis of polar and/or ionizable compounds, as it often provides higher MS sensitivity and alternative selectivity. Nevertheless, this technique can be also prone to matrix effects (ME). ME are one of the major issues in quantitative LC-MS bioanalysis. To ensure acceptable method performance (i.e., trueness and precision), a careful evaluation and minimization of ME is required. In the present study, the incidence of ME in HILIC-MS/MS and RPLC-MS/MS was compared for plasma and urine samples using two representative sets of 38 pharmaceutical compounds and 40 doping agents, respectively. The optimal generic chromatographic conditions in terms of selectivity with respect to interfering compounds were established in both chromatographic modes by testing three different stationary phases in each mode with different mobile phase pH. A second step involved the assessment of ME in RPLC and HILIC under the best generic conditions, using the post-extraction addition method. Biological samples were prepared using two different sample pre-treatments, i.e., a non-selective sample clean-up procedure (protein precipitation and simple dilution for plasma and urine samples, respectively) and a selective sample preparation, i.e., solid phase extraction for both matrices. The non-selective pretreatments led to significantly less ME in RPLC vs. HILIC conditions regardless of the matrix. On the contrary, HILIC appeared as a valuable alternative to RPLC for plasma and urine samples treated by a selective sample preparation. Indeed, in the case of selective sample preparation, the compounds influenced by ME were different in HILIC and RPLC, and lower and similar ME occurrence was generally observed in RPLC vs. HILIC for urine and plasma samples, respectively. The complementary of both chromatographic modes was also demonstrated, as ME was observed only scarcely for urine and plasma samples when selecting the most appropriate chromatographic mode.