102 resultados para Intrinsic electrophysiological properties
Resumo:
Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. STEM CELLS 2012;30:405-414.
Resumo:
The thesis is situated in the domain of contemporary metaphysics of science. The question is which ontology fits best with our knowledge of the world. The method chosen is the one of evaluating the consequences of different ontological frameworks against the background of our scientific knowledge of the world. The thesis analyses the two main frameworks in today's metaphysics of science, Humeanism and dispositionalism. It advocates that only an unorthodox version of Humeanism and only an unorthodox version of dispositionalism can be defended, the unorthodox character of these versions consisting in taking the fundamental properties to be relations rather than intrinsic properties. The thesis then sets out in detail what such an unorthodox version of Humeanism amounts to. Chapters 1 and 2 introduce the standard versions of Humeanism and dispositionalism, focussing on the accounts of laws of nature and causation. Chapter 3 compares both these positions and concludes that as far as the orthodox versions are concerned, dispositionalism fares better than Humeanism, since it can avoid Humeanism's commitments to quidditism and humility. However, as is argued in chapter 4, instead of replying to the objections from quidditism and humility by switching to dispositionalism, there is an unorthodox version of Humeanism available that does not run into these problematic consequences and that is supported by science: if one takes the fundamental physical properties to be relations instead of intrinsic properties, the objection from quidditism is avoided, since there is no hidden intrinsic essence of relations. As regards the objection from humility, one can maintain that science is in principle able to provide knowledge of the fundamental relations that there are in the world so that there is no principled ignorance. Consequently, the thesis concludes that Humeanism and dispositionalism are on a par as regards the remaining charge of humility. Unorthodox Humeanism provides a competitive and adequate ontology in the light of contemporary science.
Resumo:
BACKGROUND: In our hands, in vivo segmental vessel length changes up to 5% because of blood pressure: increasing in arterial pressure is associated to decrease in segmental vessel length. METHODS AND MATERIAL: Using two piezoelectric crystals sutured on vessel wall and a high fidelity pressure probe, we recorded artery length variations as function of blood pressure, before and after an end-to-end anastomosis on four pigs carotid arteries. RESULTS: Mean arterial pressure before anastomosis = 73 mmHg (+/- 12); mean arterial pressure after anastomosis = 91 mmHg (+/- 14); mean crystals displacement before anastomosis during systole = -0.21 mm; mean crystals displacement after anastomosis during systole = +0.24 mm; mean distance between crystals before anastomosis = 12.3 mm (+/- 0.8) and after anastomosis = 11.2 mm (+/- 0.5). CONCLUSIONS: In the acute phase following an end-to-end anastomosis, an increase in blood pressure causes increasing in vessel length, with an exponential correlation. The anastomosis is constantly subjected to a longitudinal traction whose magnitude depends on blood pressure.
Resumo:
Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.
Resumo:
The epithelial Na(+) channel (ENaC), located in the apical membrane of tight epithelia, allows vectorial Na(+) absorption. The amiloride-sensitive ENaC is highly selective for Na(+) and Li(+) ions. There is growing evidence that the short stretch of amino acid residues (preM2) preceding the putative second transmembrane domain M2 forms the outer channel pore with the amiloride binding site and the narrow ion-selective region of the pore. We have shown previously that mutations of the alphaS589 residue in the preM2 segment change the ion selectivity, making the channel permeant to K(+) ions. To understand the molecular basis of this important change in ionic selectivity, we have substituted alphaS589 with amino acids of different sizes and physicochemical properties. Here, we show that the molecular cutoff of the channel pore for inorganic and organic cations increases with the size of the amino acid residue at position alpha589, indicating that alphaS589 mutations enlarge the pore at the selectivity filter. Mutants with an increased permeability to large cations show a decrease in the ENaC unitary conductance of small cations such as Na(+) and Li(+). These findings demonstrate the critical role of the pore size at the alphaS589 residue for the selectivity properties of ENaC. Our data are consistent with the main chain carbonyl oxygens of the alphaS589 residues lining the channel pore at the selectivity filter with their side chain pointing away from the pore lumen. We propose that the alphaS589 side chain is oriented toward the subunit-subunit interface and that substitution of alphaS589 by larger residues increases the pore diameter by adding extra volume at the subunit-subunit interface.
Resumo:
Streptococcus gordonii alpha-phosphoglucomutase, which converts glucose 6-phosphate to glucose 1-phosphate, is encoded by pgm. The pgm transcript is monocistronic and is initiated from a sigma(A)-like promoter. Mutants with a gene disruption in pgm exhibited an altered cell wall muropeptide pattern and a lower teichoic acid content, and had reduced fitness both in vitro and in vivo. In vitro, the reduced fitness included reduced growth, reduced viability in the stationary phase and increased autolytic activity. In vivo, the pgm-deficient strain had a lower virulence in a rat model of experimental endocarditis.
Resumo:
Nonlinear optical nanocrystals have been recently introduced as a promising alternative to fluorescent probes for multiphoton microscopy. We present for the first time a complete survey of the properties of five nanomaterials (KNbO(3), LiNbO(3), BaTiO(3), KTP, and ZnO), describing their preparation and stabilization and providing quantitative estimations of their nonlinear optical response. In the light of their prospective use as biological and clinical markers, we assess their biocompatibility on human healthy and cancerous cell lines. Finally, we demonstrate the great potential for cell imaging of these inherently nonlinear probes in terms of optical contrast, wavelength flexibility, and signal photostability.
Resumo:
Abstract : Expression of fear involves changes in a number of behavioral and physiological parameters that are triggered by the central amygdala (CeA). The fear circuit also includes a series of brain stem nuclei that are the final effectors of the changes induced by the fear reaction. The CeA expresses many different neuropeptide receptors that can modulate fear responses. Today, the precise organization and the modulation of projections from the amygdala to the brain stem are still poorly understood. The aim of this project was to better understand the organization and the modulation of the fear circuit. To investigate this we first determined whether the CeA is composed of separate neuronal populations, where each one projects to specific brain stem nuclei, or whether single CeA neurons project to several nuclei. For this purpose, we first selected two brain stem nuclei implicated in the modulation of different components of the fear reactions, the periaqueductal gray (implicated in freezing) and the nucleus of solitary tract (implicated in heart rate modulation). We then performed double injections of two different retrograde tracers in these two nuclei and we quantified the subsequent presence of co-labelling in the CeA. We found that neurons projecting to the PAG and to the NTS are organized in separate populations. Subsequent electrophysiological recordings of the two populations revealed that PAG and NTS projecting neurons also have different electrophysiological characteristics. We then verified in vitro whether the neurons projecting to different brain stem nuclei express specific combinations of neuropeptide receptors, and whether a neuropeptide acting pre-synaptically (oxytocin) specifically modulates one of these two projections. We did not find differences at the level of expression of neurópeptide receptors, but we observed that oxytocin, a neuropeptide with anxiolytic properties, modulates PAG projecting neurons without affecting NTS projecting neurons. As oxytocin appeared to specifically modulate projections to the PAG, involved in the modulation of the freezing reaction, but did not affect the projections to the NTS, implicated in the modulation of cardiovascular parameters, we verified how this modulation translates in living animals. We investigated the effects of infra-amygdala injection of oxytocin on cardiovascular and behavioral changes induced by contextual fear conditioning. We found that oxytocin decreased the freezing response without affecting the cardiovascular system. Finally, as neuropeptides are considered potential future anxiolytics, we investigated whether diazepam and oxytocin, acting on the same circuit, had additive effects. This question was addressed exclusively with an in vitro electrophysiological approach. We obtained that oxytocin and diazepam, when co-applied, had an additive effect on both synaptic transmission and neuronal activity. These results open new perspectives for the possible clinical applications of oxytocin. Résumé : L'expression de la peur est accompagnée par de nombreux changements physiologiques et comportementaux qui sont déclenchés par l'amygdale centrale (CeA). Le circuit inclue aussi une série de noyaux du tronc cérébrale qui sont les effecteurs des différentes composantes de la réaction de peur. On sait que CeA envoie des projections aux noyaux du tronc cérébral et que ces neurones expriment une grande variété de récepteurs aux neuropeptides. Par contre, l'organisation des projections, ainsi que la modulation de ces projections par les neuropeptides reste encore peu connue. Avec ce projet, on premièrement voulu déterminer si CeA est composée de populations neuronales séparées qui projettent vers un noyau spécifique, ou bien si chaque neurones envoie des projections vers plusieurs noyaux. A ce propos, on a effectué des doubles injections de deux traceurs rétrogrades différentes dans deux noyaux du tronc cérébral impliqués dans des différentes composantes des réactions de peur. On a injecté la substance grise périaqueducale (PAG), qui est impliquée dans la réponse d'immobilisation, ainsi que le noyau du tractus solitaire (NTS) qui est responsable des changements cardiovasculaires. On a ensuite quantifié la présence de neurones contenant les deux traceurs dans CeA. On a trouvé que la plupart des neurones de l'amygdale centrale projettent vers un noyau spécifique, et on peut donc dire que l'amygdale semble être composée de populations neuronales séparées. On a ensuite mesuré les caractéristiques électrophysiologiques de ces deux projections et on a trouvé des différences substantielles concernant la résistance membranaire, la capacitance, le potentiel membranaire de repos ainsi que la fréquence des potentiels d'action spontanés. Puis, comme beaucoup de neuropéptides dans l'amygdale exercent un effet modulatoire sûr les réactions de peur et sur l'anxiété, on a étudié les effets directs et indirects d'une série de neuropeptides sur les différentes projections pour évaluer s'il y a des neuropeptides qui agissent spécifiquement sur une. On n'a pas trouvé de différences entre neurones qui projettent vers le PAG et neurones qui projettent vers le NTS concernant les effets de neuropeptides qui agissent directement sur ces cellules. Par contre, on a trouvé que l'ocytocine, un neuropeptide qui se lie à des récepteurs dans la partie latérale de l'amygdale centrale et inhibe de façon indirecte les neurones de l'amygdala centrale médiale, module les projections vers le PAG sans affecter celles qui vont vers le NTS. Comme le PAG est impliqué dans la réponse d'immobilisation, alors que le NTS est impliqué dans la modulation cardiovasculaire, on a ensuite étudié les effets de l'ocytocine injectée dans l'amygdale de rat vivants sur les réactions de peur conditionnées. On a trouvé que l'ocytocine diminue la réponse d'immobilisation sans par contre affecter la réponse cardiovasculaire. Pour terminer, on a vérifié si l'ocytocine potentialise les effets d'un médicament anxiolytique, le diazeparn. Avec une étude in vitro on a trouvé qu'une co-application d'ocytocine et diazeparn résulte en un effet additionnel à la fois sur la transmission synaptique ainsi que sur l'activité neuronale des neurones de l'amygdale centrale médiale. Ces résultats ouvrent des nouvelles perspectives pour une potentielle utilisation clinique de l'ocytocine.
Resumo:
The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 degrees C, as in vivo. Using two orthogonal methods, a common SLP (20 Wg(-1)) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Atomic force microscope is an invaluable device to explore living specimens at a nanometric scale. It permits to image the topography of the sample in 3D, to measure its mechanical properties and to detect the presence of specific molecules bound on its surface. Here we describe the procedure to gather such a data set on living macrophages.
Resumo:
Intrinsic connections in the cat primary auditory field (AI) as revealed by injections of Phaseolus vulgaris leucoagglutinin (PHA-L) or biocytin, had an anisotropic and patchy distribution. Neurons, labelled retrogradely with PHA-L were concentrated along a dorsoventral stripe through the injection site and rostral to it; the spread of rostrally located neurons was greater after injections into regions of low rather than high characteristic frequencies. The intensity of retrograde labelling varied from weak and granular to very strong and Golgi-like. Out of 313 Golgi like retrogradely labelled neurons 79.6% were pyramidal, 17.2% multipolar, 2.6% bipolar, and 0.6% bitufted; 13.4% were putatively inhibitory, i.e. aspiny or sparsely spiny multipolar, or bitufted. Individual anterogradely labelled intrinsic axons were reconstructed for distances of 2 to 7 mm. Five main types were distinguished on the basis of the branching pattern and the location of synaptic specialisations. Type 1 axons travelled horizontally within layers II to VI and sent collaterals at regular intervals; boutons were only present in the terminal arborizations of these collaterals. Type 2 axons also travelled horizontally within layers II to VI and had rather short and thin collateral branches; boutons or spine-like protrusions occurred in most parts of the axon. Type 3 axons travelled obliquely through the cortex and formed a single terminal arborization, the only site where boutons were found. Type 4 axons travelled for some distance in layer I; they formed a heterogeneous group as to their collaterals and synaptic specializations. Type 5 axons travelled at the interface between layer VI and the white matter; boutons en passant, spine-like protrusions, and thin short branches with boutons en passant were frequent all along their trajectory. Thus, only some axonal types sustain the patchy pattern of intrinsic connectivity, whereas others are involved in a more diffuse connectivity.
Resumo:
The paper spells out five different accounts of the relationship between objects and relations three of which are versions of ontic structural realism (OSR). We argue that the distinction between objects and properties, including relations, is merely a conceptual one by contrast to an ontological one: properties, including relations, are modes, that is the concrete, particular ways in which objects exist. We then set out moderate OSR as the view according to which irreducible relations are central ways in which the fundamental physical objects exist. Physical structures thus consist in objects for whom it is essential that they are related in certain ways. There hence are objects, but they do not possess an intrinsic identity. This view can also admit intrinsic properties as ways in which objects exist provided that these do not amount to identity conditions for the objects. Finally, we indicate how this view can take objective modality into account.
Resumo:
BAFF is a B cell survival factor that binds to three receptors BAFF-R, TACI and BCMA. BAFF-R is the receptor triggering naïve B cell survival and maturation while BCMA supports the survival of plasma cells in the bone marrow. Excessive BAFF production leads to autoimmunity, presumably as the consequence of inappropriate survival of self-reactive B cells. The function of TACI has been more elusive with TACI(-/-) mice revealing two sides of this receptor, a positive one driving T cell-independent immune responses and a negative one down-regulating B cell activation and expansion. Recent work has revealed that the regulation of TACI expression is intimately linked to the activation of innate receptors on B cells and that TACI signalling in response to multimeric BAFF and APRIL provides positive signals to plasmablasts. How TACI negatively regulates B cells remains elusive but may involve an indirect control of BAFF levels. The discovery of TACI mutations associated with common variable immunodeficiency (CVID) in humans not only reinforces its important role for humoral responses but also suggests a more complex role than first anticipated from knockout animals. TACI is emerging as an unusual TNF receptor-like molecule with a sophisticated mode of action.
Resumo:
AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C. The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant I(Na) was accelerated in a voltage-dependent manner and the steady-state inactivation curve was shifted by 11.6 mV towards negative potentials. No change was observed regarding activation characteristics. Altogether, these biophysical alterations decreased the availability of I(Na). In the simulations, the I(to) density necessary to precipitate repolarization differed minimally between the two genotypes. In contrast, the mutation greatly affected conduction across a structural heterogeneity and precipitated conduction block. CONCLUSION: Our data confirm that mutations of the C-terminal domain of Na(v)1.5 alter the inactivation of the channel and support the notion that conduction alterations may play a significant role in the pathogenesis of BrS.