232 resultados para Interleukin-10 -- genetics
Resumo:
Bone loss secondary to inflammatory bowel diseases (IBD) is largely explained by activated T cells producing cytokines that trigger osteoclastogenesis and accelerate bone resorptionwhile inhibiting bone formation. In IBD, elevated expression of interleukin (IL)-15, a T cell growth factor, plays a central role in T cell activation, pro-inflammatory cytokine production and the development of colitis. We previously reported that IL-15 enhances RANKL-induced osteoclastogenesis and that an IL-15 antagonist, CRB-15, prevents weight and bone loss in a mousemodel of dextran sulfate sodium-induced colitis.We hypothesized that inhibition of IL-15 signalingmight prevent bone loss in IL-10 deficient (IL10−/−) mice, that develop spontaneous bowel inflammation associatedwith osteopeniawhen they are no longer raised under germ-free conditions.Mice received anIL-15 antagonist (CRB-15, 5 μg/day, n=5) or IgG2a (5 μg/day, n=4) fromweek 10 to 14 of age. The severity of colitis was assessed by histology and bowel cytokine gene expression by real time PCR. Bone mass and architecturewere evaluated by ex vivo DXA on femur and micro-computed tomography on femur and vertebra. Bodyweight gainwas similar in the two groups. After 4 weeks, colonwas 29% shorter in CRB-15 treatedmice (p<0.006), a sign of reduced inflammation. Histological analysis indicated a transmural infiltration of inflammatory cells, lymphoepithelial lesions and increased size of villi (histological score=4/6) in IgG2a treated mice, whereas colon from CRB-15 treated mice exhibited mild infiltration of inflammatory cells of the lamina propria, no mucosal damages and a minimal increased size of villi (histological score=1.6/6). Levels of TNFα, IL-17 and IL-6 mRNA in the colon were significantly reduced in CRB-15 treated mice (p<0.04 vs IgG2), indicating a decrease in colon inflammation. CRB-15 improved femur BMD (+10.6% vs IgG2a, p<0.002), vertebral trabecular bone volume fraction (BV/TV, +19.7% vs IgG2a, p<0.05) and thickness (+11.6% vs IgG2a, p<0.02). A modest but not significant increase in trabecular BV/TV was observed at the distal femur. Cortical thicknesswas also higher at themidshaft femur in CRB-15 treatedmice (+8.3% vs IgG2a, p<0.02). In conclusion, we confirm and extend our results about the effects of CRB-15 in colitis. Antagonizing IL-15 may exert favorable effects on intestinal inflammation and prevent bone loss and microarchitecture alterations induced by colitis. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: B. Brounais-Le Royer Grant / Research Support from Novartis Consumer Health Foundation, S. Ferrari-Lacraz: none declared, D. Velin: none declared, X. Zheng: none declared, S. Ferrari: none declared, D. Pierroz: none declared.
Resumo:
Mouse interleukin 3 (IL-3) cDNA was cloned into a plasmid construction, allowing the synthesis of very high quantities of IL-3 in Escherichia coli. The recombinant (r) IL-3, purified to homogeneity, was active in vitro on the proliferation and differentiation of various hematopoietic progenitor cells at 1 pM. To maintain detectable blood levels of IL-3, osmotic pumps containing rIL-3 or control solutions were placed under the skin of normal and irradiated C3H/HeJ and (BALB X B10) F1 mice. The effect of IL-3 on hematopoietic progenitor cell numbers in spleen and bone marrow was evaluated 3 and 7 days later by using an in vitro clonal assay. The results demonstrated the following: (i) Doses of IL-3 infused at the rate of 2.5-5 ng per g of body weight per hr were sufficient to increase the numbers of hematopoietic progenitors in normal mice by at least 2-fold within 3 days. (ii) In mice with progenitor cell levels depressed by sublethal irradiation, 7-day treatment with IL-3 resulted in a 10-fold increase to near normal levels. (iii) The erythroid and myeloid lineages appeared to be enhanced to the same extent. (iv) Enhancement of hematopoiesis occurred primarily in spleen, but hematopoietic foci were also evident in the liver; in contrast, total cell and progenitor cell numbers were decreased in the bone marrow.
Resumo:
The identification of associations between interleukin-28B (IL-28B) variants and the spontaneous clearance of hepatitis C virus (HCV) raises the issues of causality and the net contribution of host genetics to the trait. To estimate more precisely the net effect of IL-28B genetic variation on HCV clearance, we optimized genotyping and compared the host contributions in multiple- and single-source cohorts to control for viral and demographic effects. The analysis included individuals with chronic or spontaneously cleared HCV infections from a multiple-source cohort (n = 389) and a single-source cohort (n = 71). We performed detailed genotyping in the coding region of IL-28B and searched for copy number variations to identify the genetic variant or haplotype carrying the strongest association with viral clearance. This analysis was used to compare the effects of IL-28B variation in the two cohorts. Haplotypes characterized by carriage of the major alleles at IL-28B single-nucleotide polymorphisms (SNPs) were highly overrepresented in individuals with spontaneous clearance versus those with chronic HCV infections (66.1% versus 38.6%, P = 6 × 10(-9) ). The odds ratios for clearance were 2.1 [95% confidence interval (CI) = 1.6-3.0] and 3.9 (95% CI = 1.5-10.2) in the multiple- and single-source cohorts, respectively. Protective haplotypes were in perfect linkage (r(2) = 1.0) with a nonsynonymous coding variant (rs8103142). Copy number variants were not detected. We identified IL-28B haplotypes highly predictive of spontaneous HCV clearance. The high linkage disequilibrium between IL-28B SNPs indicates that association studies need to be complemented by functional experiments to identify single causal variants. The point estimate for the genetic effect was higher in the single-source cohort, which was used to effectively control for viral diversity, sex, and coinfections and, therefore, offered a precise estimate of the net host genetic contribution.
Resumo:
RATIONALE: The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. OBJECTIVE: The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. METHODS AND RESULTS: Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. CONCLUSIONS: Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.
Resumo:
Interleukin-1β (IL-1β) is a potent inflammatory cytokine that is usually cleaved and activated by inflammasome-associated caspase-1. To determine whether IL-1β activation is regulated by inhibitor of apoptosis (IAP) proteins, we treated macrophages with an IAP-antagonist "Smac mimetic" compound or genetically deleted the genes that encode the three IAP family members cIAP1, cIAP2, and XIAP. After Toll-like receptor priming, IAP inhibition triggered cleavage of IL-1β that was mediated not only by the NLRP3-caspase-1 inflammasome, but also by caspase-8 in a caspase-1-independent manner. In the absence of IAPs, rapid and full generation of active IL-1β by the NLRP3-caspase-1 inflammasome, or by caspase-8, required the kinase RIP3 and reactive oxygen species production. These results demonstrate that activation of the cell death-inducing ripoptosome platform and RIP3 can generate bioactive IL-1β and implicate them as additional targets for the treatment of pathological IL-1-driven inflammatory responses.
Resumo:
Interleukin-1 receptor (IL-1RI) is a master regulator of inflammation and innate immunity. When triggered by IL-1beta, IL-1RI aggregates with IL-1R-associated protein (IL-1RAcP) and forms a membrane proximal signalosome that potently activates downstream signaling cascades. IL-1beta also rapidly triggers endocytosis of IL-1RI. Although internalization of IL-1RI significantly impacts signaling, very little is known about trafficking of IL-1RI and therefore about precisely how endocytosis modulates the overall cellular response to IL-1beta. Upon internalization, activated receptors are often sorted through endosomes and delivered to lysosomes for degradation. This is a highly regulated process that requires ubiquitination of cargo proteins as well as protein-sorting complexes that specifically recognize ubiquitinated cargo. Here, we show that IL-1beta induces ubiquitination of IL-1RI and that via these attached ubiquitin groups, IL-1RI interacts with the ubiquitin-binding protein Tollip. By using an assay to follow trafficking of IL-1RI from the cell surface to late endosomes and lysosomes, we demonstrate that Tollip is required for sorting of IL-1RI at late endosomes. In Tollip-deficient cells and cells expressing only mutated Tollip (incapable of binding IL-1RI and ubiquitin), IL-1RI accumulates on late endosomes and is not efficiently degraded. Furthermore, we show that IL-1RI interacts with Tom1, an ubiquitin-, clathrin-, and Tollip-binding protein, and that Tom1 knockdown also results in the accumulation of IL-1RI at late endosomes. Our findings suggest that Tollip functions as an endosomal adaptor linking IL-1RI, via Tom1, to the endosomal degradation machinery.
Resumo:
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS.
Resumo:
UNLABELLED: NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4(+) T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV vaccine vector. IMPORTANCE: NYVAC is a replication-deficient poxvirus developed as a vaccine vector against HIV. NYVAC expresses several genes known to impair the host immune defenses by interfering with innate immune receptors, cytokines, or interferons. Given the crucial role played by interferons against viruses, we postulated that targeting the type I and type II decoy receptors used by poxvirus to subvert the host innate immune response would be an attractive approach to improve the immunogenicity of NYVAC vectors. Using systems biology approaches, we report that deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus resulted in the robust expression of type I IFNs and interferon-stimulated genes (ISGs), a strong activation of the inflammasome, and upregulated expression of IL-1β and proinflammatory cytokines. Dual deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus improves its immunogenic profile and makes it an attractive candidate HIV vaccine vector.
Resumo:
The dispersal process, by which individuals or other dispersing agents such as gametes or seeds move from birthplace to a new settlement locality, has important consequences for the dynamics of genes, individuals, and species. Many of the questions addressed by ecology and evolutionary biology require a good understanding of species' dispersal patterns. Much effort has thus been devoted to overcoming the difficulties associated with dispersal measurement. In this context, genetic tools have long been the focus of intensive research, providing a great variety of potential solutions to measuring dispersal. This methodological diversity is reviewed here to help (molecular) ecologists find their way toward dispersal inference and interpretation and to stimulate further developments.
Resumo:
Cytokines have a fundamental role in orchestrating innate immune responses to bacterial infections. Interleukin-33 (IL-33) is now shown to protect from sepsis by promoting neutrophil influx into the focus of infection
Resumo:
A new study shows that wood ant queens selectively pass the maternally-inherited half of their genome to their daughters and the paternally-inherited half to their sons. This system, which most likely evolved from ancestral hybridization, creates distinct genetic lineages.
Resumo:
BACKGROUND: Type 1 pseudohypoaldosteronism (PHA1) is a salt-wasting syndrome caused by mineralocorticoid resistance. Autosomal recessive and dominant hereditary forms are caused by Epithelial Na Channel and Mineralocorticoid Receptor mutation respectively, while secondary PHA1 is usually associated with urological problems. METHODS: Ten patients were studied in four French pediatric units in order to characterize PHA1 spectrum in infants. Patients were selected by chart review. Genetic, clinical and biochemistry data were collected and analyzed. RESULTS: Autosomal recessive PHA1 (n = 3) was diagnosed at 6 and 7 days of life in three patients presenting with severe hyperkalaemia and weight loss. After 8 months, 3 and 5 years on follow-up, neurological development and longitudinal growth was normal with high sodium supplementation. Autosomal dominant PHA1 (n = 4) was revealed at 15, 19, 22 and 30 days of life because of failure to thrive. At 8 months, 3 and 21 years of age, longitudinal growth was normal in three patients who were given salt supplementation; no significant catch-up growth was obtained in the last patient at 20 months of age. Secondary PHA1 (n = 3) was diagnosed at 11, 26 days and 5 months of life concomitantly with acute pyelonephritis in three children with either renal hypoplasia, urinary duplication or bilateral megaureter. The outcome was favourable and salt supplementation was discontinued after 3, 11 and 13 months. CONCLUSIONS: PHA1 should be suspected in case of severe hyperkalemia and weight loss in infants and need careful management. Pathogenesis of secondary PHA1 is still challenging and further studies are mandatory to highlight the link between infection, developing urinary tract and pseudohypoaldosteronism.
Resumo:
Animal models of infective endocarditis (IE) induced by high-grade bacteremia revealed the pathogenic roles of Staphylococcus aureus surface adhesins and platelet aggregation in the infection process. In humans, however, S. aureus IE possibly occurs through repeated bouts of low-grade bacteremia from a colonized site or intravenous device. Here we used a rat model of IE induced by continuous low-grade bacteremia to explore further the contributions of S. aureus virulence factors to the initiation of IE. Rats with aortic vegetations were inoculated by continuous intravenous infusion (0.0017 ml/min over 10 h) with 10(6) CFU of Lactococcus lactis pIL253 or a recombinant L. lactis strain expressing an individual S. aureus surface protein (ClfA, FnbpA, BCD, or SdrE) conferring a particular adhesive or platelet aggregation property. Vegetation infection was assessed 24 h later. Plasma was collected at 0, 2, and 6 h postinoculation to quantify the expression of tumor necrosis factor (TNF), interleukin 1α (IL-1α), IL-1β, IL-6, and IL-10. The percentage of vegetation infection relative to that with strain pIL253 (11%) increased when binding to fibrinogen was conferred on L. lactis (ClfA strain) (52%; P = 0.007) and increased further with adhesion to fibronectin (FnbpA strain) (75%; P < 0.001). Expression of fibronectin binding alone was not sufficient to induce IE (BCD strain) (10% of infection). Platelet aggregation increased the risk of vegetation infection (SdrE strain) (30%). Conferring adhesion to fibrinogen and fibronectin favored IL-1β and IL-6 production. Our results, with a model of IE induced by low-grade bacteremia, resembling human disease, extend the essential role of fibrinogen binding in the initiation of S. aureus IE. Triggering of platelet aggregation or an inflammatory response may contribute to or promote the development of IE.
Resumo:
Purpose of review: Elucidating the genetic background of Parkinson disease and essential tremor is crucial to understand the pathogenesis and improve diagnostic and therapeutic strategies. Recent findings: A number of approaches have been applied including familial and association studies, and studies of gene expression profiles to identify genes involved in susceptibility to Parkinson disease. These studies have nominated a number of candidate Parkinson disease genes and novel loci including Omi/HtrA2, GIGYF2, FGF20, PDXK, EIF4G1 and PARK16. A recent notable finding has been the confirmation for the role of heterozygous mutations in glucocerebrosidase (GBA) as risk factors for Parkinson disease. Finally, association studies have nominated genetic variation in the leucine-rich repeat and Ig containing 1 gene (LINGO1) as a risk for both Parkinson disease and essential tremor, providing the first genetic evidence of a link between the two conditions. Summary: Although undoubtedly genes remain to be identified, considerable progress has been achieved in the understanding of the genetic basis of Parkinson disease. This same effort is now required for essential tremor. The use of next-generation high-throughput sequencing and genotyping technologies will help pave the way for future insight leading to advances in diagnosis, prevention and cure.
Resumo:
Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors.