178 resultados para Intention-based models
Resumo:
ABSTRACT: BACKGROUND: The incidence of ventilator-associated pneumonia (VAP) within the first 48 hours of intensive care unit (ICU) stay has been poorly investigated. The objective was to estimate early-onset VAP occurrence in ICUs within 48 hours after admission. METHODS: We analyzed data from prospective surveillance between 01/01/2001 and 31/12/2009 in 11 ICUs of Lyon hospitals (France). The inclusion criteria were: first ICU admission, not hospitalized before admission, invasive mechanical ventilation during first ICU day, free of antibiotics at admission, and ICU stay >=48 hours. VAP was defined according to a national protocol. Its incidence was the number of events per 1,000 invasive mechanical ventilation-days. The Poisson regression model was fitted from day 2 (D2) to D8 to incident VAP to estimate the expected VAP incidence from D0 to D1 of ICU stay. RESULTS: Totally, 367 (10.8%) of 3,387 patients in 45,760 patient-days developed VAP within the first 9 days. The predicted cumulative VAP incidence at D0 and D1 was 5.3 (2.6-9.8) and 8.3 (6.1-11.1), respectively. The predicted cumulative VAP incidence was 23.0 (20.8-25.3) at D8. The proportion of missed VAP within 48 hours from admission was 11% (9%-17%). CONCLUSIONS: Our study indicates underestimation of early-onset VAP incidence in ICUs, if only VAP occurring [greater than or equal to]48 hours is considered to be hospital-acquired. Clinicians should be encouraged to develop a strategy for early detection after ICU admission.
Resumo:
OBJECTIVE: To develop a simple prognostic model to predict outcome at 1 month after acute basilar artery occlusion (BAO) with readily available predictors. METHODS: The Basilar Artery International Cooperation Study (BASICS) is a prospective, observational, international registry of consecutive patients who presented with an acute symptomatic and radiologically confirmed BAO. We considered predictors available at hospital admission in multivariable logistic regression models to predict poor outcome (modified Rankin Scale [mRS] score 4-5 or death) at 1 month. We used receiver operator characteristic curves to assess the discriminatory performance of the models. RESULTS: Of the 619 patients, 429 (69%) had a poor outcome at 1 month: 74 (12%) had a mRS score of 4, 115 (19%) had a mRS score of 5, and 240 (39%) had died. The main predictors of poor outcome were older age, absence of hyperlipidemia, presence of prodromal minor stroke, higher NIH Stroke Scale (NIHSS) score, and longer time to treatment. A prognostic model that combined demographic data and stroke risk factors had an area under the receiver operating characteristic curve (AUC) of 0.64. This performance improved by including findings from the neurologic examination (AUC 0.79) and CT imaging (AUC 0.80). A risk chart showed predictions of poor outcome at 1 month varying from 25 to 96%. CONCLUSION: Poor outcome after BAO can be reliably predicted by a simple model that includes older age, absence of hyperlipidemia, presence of prodromal minor stroke, higher NIHSS score, and longer time to treatment.
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.
Resumo:
Objectives: The study objective was to derive reference pharmacokinetic curves of antiretroviral drugs (ART) based on available population pharmacokinetic (Pop-PK) studies that can be used to optimize therapeutic drug monitoring guided dosage adjustment.¦Methods: A systematic search of Pop-PK studies of 8 ART in adults was performed in PubMed. To simulate reference PK curves, a summary of the PK parameters was obtained for each drug based on meta-analysis approach. Most models used one-compartment model, thus chosen as reference model. Models using bi-exponential disposition were simplified to one-compartment, since the first distribution phase was rapid and not determinant for the description of the terminal elimination phase, mostly relevant for this project. Different absorption were standardized for first-order absorption processes.¦Apparent clearance (CL), apparent volume of distribution of the terminal phase (Vz) and absorption rate constant (ka) and inter-individual variability were pooled into summary mean value, weighted by number of plasma levels; intra-individual variability was weighted by number of individuals in each study.¦Simulations based on summary PK parameters served to construct concentration PK percentiles (NONMEM®).¦Concordance between individual and summary parameters was assessed graphically using Forest-plots. To test robustness, difference in simulated curves based on published and summary parameters was calculated using efavirenz as probe drug.¦Results: CL was readily accessible from all studies. For studies with one-compartment, Vz was central volume of distribution; for two-compartment, Vz was CL/λz. ka was directly used or derived based on the mean absorption time (MAT) for more complicated absorption models, assuming MAT=1/ka.¦The value of CL for each drug was in excellent agreement throughout all Pop-PK models, suggesting that minimal concentration derived from summary models was adequately characterized. The comparison of the concentration vs. time profile for efavirenz between published and summary PK parameters revealed not more than 20% difference. Although our approach appears adequate for estimation of elimination phase, the simplification of absorption phase might lead to small bias shortly after drug intake.¦Conclusions: Simulated reference percentile curves based on such an approach represent a useful tool for interpretating drug concentrations. This Pop-PK meta-analysis approach should be further validated and could be extended to elaborate more sophisticated computerized tool for the Bayesian TDM of ART.
Resumo:
Cloud computing and its three facets (Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS)) are terms that denote new developments in the software industry. In particular, PaaS solutions, also referred to as cloud platforms, are changing the way software is being produced, distributed, consumed, and priced. Software vendors have started considering cloud platforms as a strategic option but are battling to redefine their offerings to embrace PaaS. In contrast to SaaS and IaaS, PaaS allows for value co-creation with partners to develop complementary components and applications. It thus requires multisided business models that bring together two or more distinct customer segments. Understanding how to design PaaS business models to establish a flourishing ecosystem is crucial for software vendors. This doctoral thesis aims to address this issue in three interrelated research parts. First, based on case study research, the thesis provides a deeper understanding of current PaaS business models and their evolution. Second, it analyses and simulates consumers' preferences regarding PaaS business models, using a conjoint approach to find out what determines the choice of cloud platforms. Finally, building on the previous research outcomes, the third part introduces a design theory for the emerging class of PaaS business models, which is grounded on an extensive action design research study with a large European software vendor. Understanding PaaS business models from a market as well as a consumer perspective will, together with the design theory, inform and guide decision makers in their business model innovation plans. It also closes gaps in the research related to PaaS business model design and more generally related to platform business models.
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.
Resumo:
The EORTC 22881-10882 trial in 5178 conservatively treated early breast cancer patients showed that a 16 Gy boost dose significantly improved local control, but increased the risk of breast fibrosis. To investigate predictors for the long-term risk of fibrosis, Cox regression models of the time to moderate or severe fibrosis were developed on a random set of 1797 patients with and 1827 patients without a boost, and validated in the remaining set. The median follow-up was 10.7 years. The risk of fibrosis significantly increased (P<0.01) with increasing maximum whole breast irradiation (WBI) dose and with concomitant chemotherapy, but was independent of age. In the boost arm, the risk further increased (P<0.01) if patients had post-operative breast oedema or haematoma, but it decreased (P<0.01) if WBI was given with >6 MV photons. The c-index was around 0.62. Nomograms with these factors are proposed to forecast the long-term risk of moderate or severe fibrosis.
Resumo:
High-resolution tomographic imaging of the shallow subsurface is becoming increasingly important for a wide range of environmental, hydrological and engineering applications. Because of their superior resolution power, their sensitivity to pertinent petrophysical parameters, and their far reaching complementarities, both seismic and georadar crosshole imaging are of particular importance. To date, corresponding approaches have largely relied on asymptotic, ray-based approaches, which only account for a very small part of the observed wavefields, inherently suffer from a limited resolution, and in complex environments may prove to be inadequate. These problems can potentially be alleviated through waveform inversion. We have developed an acoustic waveform inversion approach for crosshole seismic data whose kernel is based on a finite-difference time-domain (FDTD) solution of the 2-D acoustic wave equations. This algorithm is tested on and applied to synthetic data from seismic velocity models of increasing complexity and realism and the results are compared to those obtained using state-of-the-art ray-based traveltime tomography. Regardless of the heterogeneity of the underlying models, the waveform inversion approach has the potential of reliably resolving both the geometry and the acoustic properties of features of the size of less than half a dominant wavelength. Our results do, however, also indicate that, within their inherent resolution limits, ray-based approaches provide an effective and efficient means to obtain satisfactory tomographic reconstructions of the seismic velocity structure in the presence of mild to moderate heterogeneity and in absence of strong scattering. Conversely, the excess effort of waveform inversion provides the greatest benefits for the most heterogeneous, and arguably most realistic, environments where multiple scattering effects tend to be prevalent and ray-based methods lose most of their effectiveness.
Resumo:
In medical imaging, merging automated segmentations obtained from multiple atlases has become a standard practice for improving the accuracy. In this letter, we propose two new fusion methods: "Global Weighted Shape-Based Averaging" (GWSBA) and "Local Weighted Shape-Based Averaging" (LWSBA). These methods extend the well known Shape-Based Averaging (SBA) by additionally incorporating the similarity information between the reference (i.e., atlas) images and the target image to be segmented. We also propose a new spatially-varying similarity-weighted neighborhood prior model, and an edge-preserving smoothness term that can be used with many of the existing fusion methods. We first present our new Markov Random Field (MRF) based fusion framework that models the above mentioned information. The proposed methods are evaluated in the context of segmentation of lymph nodes in the head and neck 3D CT images, and they resulted in more accurate segmentations compared to the existing SBA.
Resumo:
OBJECTIVES: Laboratory detection of vancomycin-intermediate Staphylococcus aureus (VISA) and their heterogeneous VISA (hVISA) precursors is difficult. Thus, it is possible that vancomycin failures against supposedly vancomycin-susceptible S. aureus are due to undiagnosed VISA or hVISA. We tested this hypothesis in experimental endocarditis.¦METHODS: Rats with aortic valve infection due to the vancomycin-susceptible (MIC 2 mg/L), methicillin-resistant S. aureus M1V2 were treated for 2 days with doses of vancomycin that mimicked the pharmacokinetics seen in humans following intravenous administration of 1 g of the drug every 12 h. Half of the treated animals were killed 8 h after treatment arrest and half 3 days thereafter. Population analyses were done directly on vegetation homogenates or after one subculture in drug-free medium to mimic standard diagnostic procedures.¦RESULTS: Vancomycin cured 14 of 26 animals (54%; P<0.05 versus controls) after 2 days of treatment. When vegetation homogenates were plated directly on vancomycin-containing plates, 6 of 13 rats killed 8 h after treatment arrest had positive cultures, 1 of which harboured hVISA. Likewise, 6 of 13 rats killed 3 days thereafter had positive valve cultures, 5 of which harboured hVISA. However, one subculture of vegetations in drug-free broth was enough to revert all the hVISA phenotypes to the susceptible pattern of the parent. Thus, vancomycin selected for hVISA during therapy of experimental endocarditis due to vancomycin-susceptible S. aureus. These hVISA were associated with vancomycin failure. The hVISA phenotype persisted in vivo, even after vancomycin arrest, but was missed in vitro after a single passage of the vegetation homogenate on drug-free medium.¦CONCLUSIONS: hVISA might escape detection in clinical samples if they are subcultured before susceptibility tests.
Resumo:
The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.
Resumo:
Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.
Resumo:
Abstract Significance: Schizophrenia (SZ) and bipolar disorder (BD) are classified as two distinct diseases. However, accumulating evidence shows that both disorders share genetic, pathological, and epidemiological characteristics. Based on genetic and functional findings, redox dysregulation due to an imbalance between pro-oxidants and antioxidant defense mechanisms has been proposed as a risk factor contributing to their pathophysiology. Recent Advances: Altered antioxidant systems and signs of increased oxidative stress are observed in peripheral tissues and brains of SZ and BD patients, including abnormal prefrontal levels of glutathione (GSH), the major cellular redox regulator and antioxidant. Here we review experimental data from rodent models demonstrating that permanent as well as transient GSH deficit results in behavioral, morphological, electrophysiological, and neurochemical alterations analogous to pathologies observed in patients. Mice with GSH deficit display increased stress reactivity, altered social behavior, impaired prepulse inhibition, and exaggerated locomotor responses to psychostimulant injection. These behavioral changes are accompanied by N-methyl-D-aspartate receptor hypofunction, elevated glutamate levels, impairment of parvalbumin GABA interneurons, abnormal neuronal synchronization, altered dopamine neurotransmission, and deficient myelination. Critical Issues: Treatment with the GSH precursor and antioxidant N-acetylcysteine normalizes some of those deficits in mice, but also improves SZ and BD symptoms when given as adjunct to antipsychotic medication. Future Directions: These data demonstrate the usefulness of GSH-deficient rodent models to identify the mechanisms by which a redox imbalance could contribute to the development of SZ and BD pathophysiologies, and to develop novel therapeutic approaches based on antioxidant and redox regulator compounds. Antioxid. Redox Signal. 18, 1428-1443.