114 resultados para Insulin-like growth factor 1 receptor
Resumo:
Transforming growth factor beta (TGF-beta) has been shown to be a central immunomodulator used by leishmaniae to escape effective mechanisms of protection in human and murine infections with these parasites. However, all the information is derived from studies of established infection, while little is known about TGF-beta production in response to Leishmania stimulation in healthy subjects. In this study, TGF-beta1 production was demonstrated in peripheral blood mononuclear cells from healthy subjects never exposed to leishmaniae in response to live Leishmania guyanensis, and the TGF-beta1-producing cells were described as a distinct subpopulation of CD4(+) CD25(+) regulatory T cells. The suppressive properties of CD4(+) CD25(+) T cells were demonstrated in vitro by their inhibition of production of interleukin 2 (IL-2) and IL-10 by CD4(+) CD25(-) T cells in the presence of either anti-CD3 or L. guyanensis. Although neutralization of TGF-beta1 did not reverse the suppressive activity of CD4(+) CD25(+) T cells activated by anti-CD3, it reversed the suppressive activity of CD4(+) CD25(+) T cells activated by L. guyanensis. Altogether our data demonstrated that TGF-beta1 is involved in the suppressive activity of L. guyanensis-stimulated CD4(+) CD25(+) T cells from healthy controls.
Resumo:
The growth of any solid tumor depends on angiogenesis. Vascular endothelial growth factor (VEGF) plays a prominent role in vesical tumor angiogenesis regulation. Previous studies have shown that the peroxisome proliferator-activated receptor gamma (PPARgamma) was involved in the angiogenesis process. Here, we report for the first time that in two different human bladder cancer cell lines, RT4 (derived from grade I tumor) and T24 (derived from grade III tumor), VEGF (mRNA and protein) is differentially up-regulated by the three PPAR isotypes. Its expression is increased by PPARalpha, beta, and gamma in RT4 cells and only by PPARbeta in T24 cells via a transcriptional activation of the VEGF promoter through an indirect mechanism. This effect is potentiated by an RXR (retinoid-X-receptor), selective retinoid LG10068 providing support for a PPAR agonist-specific action on VEGF expression. While investigating the downstream signaling pathways involved in PPAR agonist-mediated up-regulation of VEGF, we found that only the MEK inhibitor PD98059 reduced PPAR ligand-induced expression of VEGF. These data contribute to a better understanding of the mechanisms by which PPARs regulate VEGF expression. They may lead to a new therapeutic approach to human bladder cancer in which excessive angiogenesis is a negative prognostic factor.
Enhanced visuospatial memory following intracerebroventricular administration of nerve growth factor
Resumo:
The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.
Resumo:
Camurati-Engelmann disease is characterized by hyperostosis of the long bones and the skull, muscle atrophy, severe limb pain, and progressive joint contractures in some patients. It is caused by heterozygous mutations in the transforming growth factor β1 (TGFβ1) believed to result in improper folding of the latency-associated peptide domain of TGFβ1 and thus in increased or deregulated bioactivity. Losartan, an angiotensin II type 1 receptor antagonist, has been found to downregulate the expression of TGFβ type 1 and 2 receptors. Clinical trials with losartan have shown a benefit in Marfan syndrome, while trials are underway for Duchenne muscular dystrophy and other myopathies associated with TGFβ1 signaling. We hypothesized that due to its anti-TGFβ1 activity, losartan might be beneficial in Camurati-Engelmann disease. This report concerns a boy who presented at age 13 years with severe limb pain and difficulty in walking. Clinical and radiographic evaluation results were compatible with Camurati-Engelmann disease and the diagnosis was confirmed by mutation analysis (c.652C > T [p.Arg218Cys]). The boy underwent an experimental treatment with losartan at a dosage of 50 mg/day, orally. During the treatment period of 18 months, the intensity and frequency of limb pain decreased significantly (as shown by a pain diary), and muscle strength improved, allowing the boy to resume walking and climbing stairs. No obvious side effects were observed. We cautiously conclude that TGFβ1 inhibition with losartan deserves further evaluation in the clinical management of Camurati-Engelmann disease.
Resumo:
The phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) pathway plays pivotal roles in cell survival, growth, and proliferation downstream of growth factors. Its perturbations are associated with cancer progression, type 2 diabetes, and neurological disorders. To better understand the mechanisms of action and regulation of this pathway, we initiated a large scale yeast two-hybrid screen for 33 components of the PI3K-mTOR pathway. Identification of 67 new interactions was followed by validation by co-affinity purification and exhaustive literature curation of existing information. We provide a nearly complete, functionally annotated interactome of 802 interactions for the PI3K-mTOR pathway. Our screen revealed a predominant place for glycogen synthase kinase-3 (GSK3) A and B and the AMP-activated protein kinase. In particular, we identified the deformed epidermal autoregulatory factor-1 (DEAF1) transcription factor as an interactor and in vitro substrate of GSK3A and GSK3B. Moreover, GSK3 inhibitors increased DEAF1 transcriptional activity on the 5-HT1A serotonin receptor promoter. We propose that DEAF1 may represent a therapeutic target of lithium and other GSK3 inhibitors used in bipolar disease and depression.
Resumo:
BACKGROUND: Only 25% of IVF transfer cycles lead to a clinical pregnancy, calling for continued technical progress but also more in depth analysis of patients' individual characteristics. The interleukin-1 (IL-1) system and matrix metalloproteinases (MMPs) are strongly implicated in embryo implantation. The genes coding for IL-1Ra (gene symbol IL-1RN), IL-1beta, MMP2 and MMP9 bear functional polymorphisms. We analysed the maternal genetic profile at these polymorphic sites in IVF patients, to determine possible correlations with IVF outcome. METHODS: One hundred and sixty women undergoing an IVF cycle were enrolled and a buccal smear was obtained. The presence of IL-1RN variable number of tandem repeats and IL-1B + 3953, MMP2-1306 and MMP9-1562 single nucleotide substitutions were determined. Patients were divided into pregnancy failures (119), biochemical pregnancies (8) and clinical pregnancies (33). RESULTS: There was a 40% decrease in IL-1RN*2 allele frequency (P = 0.024) and a 45% decrease in IL-1RN*2 carrier status in the clinical pregnancy group as compared to the pregnancy failure group (P = 0.017). This decrease was still statistically significant after a multivariate logistic regression analysis. The likelihood of a clinical pregnancy was decreased accordingly in IL-1RN*2 carriers: odds ratio = 0.349, 95% confidence interval = 0.2-0.8, P = 0.017. The IL-1B, MMP2 and MMP9 polymorphisms showed no correlation with IVF outcome. CONCLUSIONS: IL-1RN*2 allele carriage is associated with a poor prognosis of achieving a pregnancy after IVF.
Resumo:
Transforming growth factor beta (TGF-beta) is a pluripotent peptide hormone that regulates various cellular activities, including growth, differentiation, and extracellular matrix protein gene expression. We previously showed that TGF-beta induces the transcriptional activation domain (TAD) of CTF-1, the prototypic member of the CTF/NF-I family of transcription factors. This induction correlates with the proposed role of CTF/NF-I binding sites in collagen gene induction by TGF-beta. However, the mechanisms of TGF-beta signal transduction remain poorly understood. Here, we analyzed the role of free calcium signaling in the induction of CTF-1 transcriptional activity by TGF-beta. We found that TGF-beta stimulates calcium influx and mediates an increase of the cytoplasmic calcium concentration in NIH3T3 cells. TGF-beta induction of CTF-1 is inhibited in cells pretreated with thapsigargin, which depletes the endoplasmic reticulum calcium stores, thus further arguing for the potential relevance of calcium mobilization in TGF-beta action. Consistent with this possibility, expression of a constitutively active form of the calcium/calmodulin-dependent phosphatase calcineurin or of the calcium/calmodulin-dependent kinase IV (DeltaCaMKIV) specifically induces the CTF-1 TAD and the endogenous mouse CTF/NF-I proteins. Both calcineurin- and DeltaCaMKIV-mediated induction require the previously identified TGF-beta-responsive domain of CTF-1. The immunosuppressants cyclosporin A and FK506 abolish calcineurin-mediated induction of CTF-1 activity. However, TGF-beta still induces the CTF-1 TAD in cells treated with these compounds or in cells overexpressing both calcineurin and DeltaCaMKIV, suggesting that other calcium-sensitive enzymes might mediate TGF-beta action. These results identify CTF/NF-I as a novel calcium signaling pathway-responsive transcription factor and further suggest multiple molecular mechanisms for the induction of CTF/NF-I transcriptional activity by growth factors.
Resumo:
Evidence that glucagon-like peptide-1 (GLP-1) (7-36) amide functions as a novel neuropeptide prompted us to study the gene expression of its receptor in rat brain. Northern blot analysis showed transcripts of similar size in RINm5F cells, hypothalamus, and brain-stem. First-strand cDNA was prepared by using RNA from hypothalamus, brainstem, and R1Nm5F cells and subsequently amplified by PCR. Southern blot analysis of the PCR products showed a major 1.4-kb band in all these preparations. PCR products amplified from hypothalamus were cloned, and the nucleotide sequence of one strand was identical to that described in rat pancreatic islets. In situ hybridization studies showed specific labeling in both neurons and glia of the thalamus, hypothalamus, hippocampus, primary olfactory cortex, choroid plexus, and pituitary gland. In the hypothalamus, ventromedial nuclei cells were highly labeled. These findings indicate that GLP-1 receptors are actually synthesized in rat brain. In addition, the colocalization of GLP-1 receptors, glucokinase, and GLUT-2 in the same areas supports the idea that these cells play an important role in glucose sensing in the brain.
Resumo:
Interleukin-1 receptor (IL-1RI) is a master regulator of inflammation and innate immunity. When triggered by IL-1beta, IL-1RI aggregates with IL-1R-associated protein (IL-1RAcP) and forms a membrane proximal signalosome that potently activates downstream signaling cascades. IL-1beta also rapidly triggers endocytosis of IL-1RI. Although internalization of IL-1RI significantly impacts signaling, very little is known about trafficking of IL-1RI and therefore about precisely how endocytosis modulates the overall cellular response to IL-1beta. Upon internalization, activated receptors are often sorted through endosomes and delivered to lysosomes for degradation. This is a highly regulated process that requires ubiquitination of cargo proteins as well as protein-sorting complexes that specifically recognize ubiquitinated cargo. Here, we show that IL-1beta induces ubiquitination of IL-1RI and that via these attached ubiquitin groups, IL-1RI interacts with the ubiquitin-binding protein Tollip. By using an assay to follow trafficking of IL-1RI from the cell surface to late endosomes and lysosomes, we demonstrate that Tollip is required for sorting of IL-1RI at late endosomes. In Tollip-deficient cells and cells expressing only mutated Tollip (incapable of binding IL-1RI and ubiquitin), IL-1RI accumulates on late endosomes and is not efficiently degraded. Furthermore, we show that IL-1RI interacts with Tom1, an ubiquitin-, clathrin-, and Tollip-binding protein, and that Tom1 knockdown also results in the accumulation of IL-1RI at late endosomes. Our findings suggest that Tollip functions as an endosomal adaptor linking IL-1RI, via Tom1, to the endosomal degradation machinery.
Resumo:
SUMMARY IL-1R and TLRs are key players in innate immunity and inflammation. Tollip was identified as a component of IL-1RI, TLR2 and TLR4 signaling complexes that activate NF-κB and MAP kinase pathways. Tollip was previously shown as a negative regulator of NF-κB and MAP Kinase activation. We have characterized the role of Tollip in IL-R/TLRs induced signaling by the analysis of the Tollip deficient mice. We showed that NF-κB and MAPK (p38, JNK, or ERK1/2) signaling appeared normal in Tollip deficient cells following stimulation with IL-1β, lipopolysaccharide (LPS), and other TLR ligands. Also IL-1β and TLRs ligands induced activation of immune cells was indistinguishable from wild-type cells. Strikingly, in Tollip deficient mice the production of the inflammatory cytokines, IL-6 or TNF-α was significantly reduced relative to control mice after treatment with physiological doses of IL-1β or LPS, whereas no difference was observed at high doses of stimulation with LPS or in LPS induced septic shock. Therefore, Tollip could be critical for regulation of optimal responses to IL-1β and LPS, in addition to its role as negative regulator of the signaling. We also studied the role of Tollip as an endocytic adaptor for IL-1R endocytosis. We could show that Il-1R is ubiquitinated after IL-1β stimulation, and that Tollip's CUE domain binds IL-1RI in an ubiquitin-dependent manner. We followed IL-1R internalization and Tollip localization by confocal microscopy. Consistent with a role for Tollip in sorting of ubiquitinated IL-1RI, a significant amount of Tollip was also localized at the late endosomal compartment. We could show that Tollip is required for efficient lysosomal targeting of ubiquitinated IL-1R1, In the absence of Tollip or in Tollip deficient cells reconstituted with a Tollip mutant (defective in ubiquitin binding) IL-1RI accumulates in enlarged late endosomes. In addition, Tollip was shown to interact with, another endocytic adapter, Toml, and both interact with IL-1RI. In conclusion, we showed that Tollip is required for IL-1β and LPS signaling for cytokine production. In addition we showed and that Tollip has a role as an endocytic adapter, necessary for efficient trafficking and lysosomal degradation of IL-1RI. Resumé Le récepteur à l'interleukine-1 (IL-1R) et les récepteurs "Toll-like" (TLRs) sont des acteurs cruciaux de la réponse immunitaire innée et de l'inflammation. La proteine Tollip a été identifiée comme étant un élément des complexes de signalisation, induits par les récepteurs IL-1RI, TLR-2 et TLR-4, qui mènent à l'activation de la voie des MAP kinases et de NF-κB. Dans de précédentes études, il a été montré que Tollip pouvait inhiber ces deux voies de signalisation. Nous avons voulu caractériser plus précisément le rôle de Tollip dans l'activation des voies de signalisation mitées par IL-1R/TLRs en utilisant une lignée murine déficiente pour la protéine Tollip. Ainsi, en absence de Tollip, les cascades d'activation de NF-κB et MAPK (p38, JNK, or ERK1/2) ne semblent pas affectées après stimulation avec IL-1β, lipopolysaccharide (LPS) ou d' autres ligands des TLR. La réponse des cellules du système immunitaire induite par la stimulation avec IL-1β et les ligands des TLR est également comparable entre les souris sauvages et les souris deficientes pour Tollip. Par contre, dans cette lignée murine, la production de cytokines proinflammatoires IL-6 et TNFα induite par la stimulation à dose physiologique de IL-1β or LPS, est réduite. Cependant, lors de stimulation à plus hautes doses de LPS ou pendant un choc septique induit par de LPS, cette réduction n'est pas observée. Ces résultats montrent que Tollip pourrait avoir un rôle déterminant dans l'activation optimale en réponse à l' IL-1β et au LPS qui s'ajoute à sa fonction inhibitrice des mêmes voies de signalisation. Nous avons aussi étudié le rôle de Tollip comme molécule adaptatatrice du mécanisme endocytique d'internalisation de l' IL-1RI. Ainsi, l' IL-1R est ubiquitiné après stimulation par l' IL-1β , permettant à Tollip de se lier au récepteur. Cette interaction est réalisée entre le domaine CUE de Tollip et l'IL-1R via l'ubiquitine. L'internalisation et la localisation intracellulaire de l'IL-1RI et de Tollip ont été observés par microscopie confocale. En accord avec le rôle de Tollip dans le triage et la recirculation des IL-1R ubiquitiné, une quantité importante de Tollip été détectée dans l' endosome tardif. Nous avons pu démontrer que Tollip était nécessaire pour diriger efficacement ubiquitiné vers les lysosomes. Dans des cellules déficientes pour Tollip, ou reconstituées avec un mutant de Tollip (MF/AA) incapable de lier l'ubiquitine, IL-1RI s'accumule dans des vesicules anormales de l'endosome tardif. Dans ce travail, nous avons pu confirmer et préciser la fonction de la protéine Tollip dans l' activation de la production de cytokines induites par l' IL-1p and le LPS lors de l'inflammation et découvrir son rôle d'adaptateur dans l' internalisation et l'endocytose de l' IL-1RI.
Resumo:
Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated.
Resumo:
BACKGROUND: Gastro-oesophageal adenocarcinomas rarely metastasize to the central nervous system (CNS). The role of the human epidermal growth factor receptor 2 (HER2) in patients with these cancers and CNS involvement is presently unknown. PATIENTS AND METHODS: A multicentre registry was established to collect data from patients with gastro-oesophageal adenocarcinomas and CNS involvement both retrospectively and prospectively. Inclusion in the study required a predefined clinical data set, a central neuro-radiological or histopathological confirmation of metastatic CNS involvement and central assessment of HER2 by immunohistochemistry (IHC) and in situ hybridisation (ISH). In addition, expression of E-cadherin and DNA mismatch repair (MMR) proteins were assessed by IHC. RESULTS: One hundred patients fulfilled the inclusion criteria. The population's median age was 59 years (interquartile range: 54-68), of which 85 (85%) were male. Twenty-five patients were of Asian and 75 of Caucasian origin. HER2 status was positive in 36% (95% CI: 26.6-46.2) of cases. Median time from initial diagnosis to the development of brain metastases (BMets) or leptomeningeal carcinomatosis (LC) was 9.9 months (95% CI: 8.5-15.0). Median overall survival from diagnosis was 16.9 months (95% CI: 14.0-20.7) and was not related to the HER2 status. E-cadherin loss was observed in 9% of cases and loss of expression in at least one DNA MMR proteins in 6%. CONCLUSIONS: The proportion of a positive HER2 status in patients with gastro-oesophageal adenocarcinoma and CNS involvement was higher than expected. The impact of anti-HER2 therapies should be studied prospectively.