169 resultados para Hillberg, Lee
Resumo:
BACKGROUND: A history of diabetes is associated with an increased risk of several types of cancers. Whether diabetes is a risk factor for head and neck cancer (HNC) has received little attention. METHODS: We pooled data from 12 case-control studies including 6,448 cases and 13,747 controls, and estimated odds ratios (OR) and 95% confidence intervals (CI) for the associations between diabetes and HNC, adjusted for age, education level, sex, race/ethnicity, study center, cigarette smoking, alcohol use and body mass index (BMI). RESULTS: We observed a weak association between diabetes and the incidence of HNC overall (OR, 1.09; 95% CI, 0.95-1.24). However, we observed a modest association among never smokers (OR, 1.59; 95% CI, 1.22-2.07), and no association among ever smokers (OR, 0.96; 95% CI, 0.83-1.11); likelihood ratio test for interaction p=0.001. CONCLUSIONS: A history of diabetes was weakly associated with HNC overall, but we observed evidence of effect modification by smoking status, with a positive association among those who never smoked cigarettes. Impact: This study suggests that glucose metabolism abnormalities may be a HNC risk factor in subgroups of the population. Prospective studies incorporating biomarkers are needed to improve our understanding of the relationship between diabetes and HNC risk, possibly providing new strategies in the prevention of HNC.
Resumo:
Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation.
Resumo:
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.
Resumo:
Pyochelin (Pch) and enantio-pyochelin (EPch) are enantiomer siderophores that are produced by Pseudomonas aeruginosa and Pseudomonas fluorescens, respectively, under iron limitation. Pch promotes growth of P. aeruginosa when iron is scarce, and EPch carries out the same biological function in P. fluorescens. However, the two siderophores are unable to promote growth in the heterologous species, indicating that siderophore-mediated iron uptake is highly stereospecific. In the present work, using binding and iron uptake assays, we found that FptA, the Fe-Pch outer membrane transporter of P. aeruginosa, recognized (K(d) = 2.5 +/- 1.1 nm) and transported Fe-Pch but did not interact with Fe-EPch. Likewise, FetA, the Fe-EPch receptor of P. fluorescens, was specific for Fe-EPch (K(d) = 3.7 +/- 2.1 nm) but did not bind and transport Fe-Pch. Growth promotion experiments performed under iron-limiting conditions confirmed that FptA and FetA are highly specific for Pch and EPch, respectively. When fptA and fetA along with adjacent transport genes involved in siderophore uptake were swapped between the two bacterial species, P. aeruginosa became able to utilize Fe-EPch as an iron source, and P. fluorescens was able to grow with Fe-Pch. Docking experiments using the FptA structure and binding assays showed that the stereospecificity of Pch recognition by FptA was mostly due to the configuration of the siderophore chiral centers C4'' and C2'' and was only weakly dependent on the configuration of the C4' carbon atom. Together, these findings increase our understanding of the stereospecific interaction between Pch and its outer membrane receptor FptA.
Resumo:
BACKGROUND AND OBJECTIVE: Protease inhibitors are highly bound to orosomucoid (ORM) (alpha1-acid glycoprotein), an acute-phase plasma protein encoded by 2 polymorphic genes, which may modulate their disposition. Our objective was to determine the influence of ORM concentration and phenotype on indinavir, lopinavir, and nelfinavir apparent clearance (CL(app)) and cellular accumulation. Efavirenz, mainly bound to albumin, was included as a control drug. METHODS: Plasma and cells samples were collected from 434 human immunodeficiency virus-infected patients. Total plasma and cellular drug concentrations and ORM concentrations and phenotypes were determined. RESULTS: Indinavir CL(app) was strongly influenced by ORM concentration (n = 36) (r2 = 0.47 [P = .00004]), particularly in the presence of ritonavir (r2 = 0.54 [P = .004]). Lopinavir CL(app) was weakly influenced by ORM concentration (n = 81) (r2 = 0.18 [P = .0001]). For both drugs, the ORM1 S variant concentration mainly explained this influence (r2 = 0.55 [P = .00004] and r2 = 0.23 [P = .0002], respectively). Indinavir CL(app) was significantly higher in F1F1 individuals than in F1S and SS patients (41.3, 23.4, and 10.3 L/h [P = .0004] without ritonavir and 21.1, 13.2, and 10.1 L/h [P = .05] with ritonavir, respectively). Lopinavir cellular exposure was not influenced by ORM abundance and phenotype. Finally, ORM concentration or phenotype did not influence nelfinavir (n = 153) or efavirenz (n = 198) pharmacokinetics. CONCLUSION: ORM concentration and phenotype modulate indinavir pharmacokinetics and, to a lesser extent, lopinavir pharmacokinetics but without influencing their cellular exposure. This confounding influence of ORM should be taken into account for appropriate interpretation of therapeutic drug monitoring results. Further studies are needed to investigate whether the measure of unbound drug plasma concentration gives more meaningful information than total drug concentration for indinavir and lopinavir.
Resumo:
The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)--major players of endodermal differentiation--into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.
Resumo:
Hypertension is a heritable and major contributor to the global burden of disease. The sum of rare and common genetic variants robustly identified so far explain only 1%-2% of the population variation in BP and hypertension. This suggests the existence of more undiscovered common variants. We conducted a genome-wide association study in 1,621 hypertensive cases and 1,699 controls and follow-up validation analyses in 19,845 cases and 16,541 controls using an extreme case-control design. We identified a locus on chromosome 16 in the 5' region of Uromodulin (UMOD; rs13333226, combined P value of 3.6×10(-11)). The minor G allele is associated with a lower risk of hypertension (OR [95%CI]: 0.87 [0.84-0.91]), reduced urinary uromodulin excretion, better renal function; and each copy of the G allele is associated with a 7.7% reduction in risk of CVD events after adjusting for age, sex, BMI, and smoking status (H.R. = 0.923, 95% CI 0.860-0.991; p = 0.027). In a subset of 13,446 individuals with estimated glomerular filtration rate (eGFR) measurements, we show that rs13333226 is independently associated with hypertension (unadjusted for eGFR: 0.89 [0.83-0.96], p = 0.004; after eGFR adjustment: 0.89 [0.83-0.96], p = 0.003). In clinical functional studies, we also consistently show the minor G allele is associated with lower urinary uromodulin excretion. The exclusive expression of uromodulin in the thick portion of the ascending limb of Henle suggests a putative role of this variant in hypertension through an effect on sodium homeostasis. The newly discovered UMOD locus for hypertension has the potential to give new insights into the role of uromodulin in BP regulation and to identify novel drugable targets for reducing cardiovascular risk.
Resumo:
We modeled work performance as outcomes of individual-differences mediated by technical performance. Beyond the "usual suspects" (e.g., general mental ability, and personality), we also measured the ethical development of participants (n = 460). We surmised that ethical development - which has not been extensively studied as a predictor of work performance while controlling for established predictors - captures unique variance in both technical and work performance. Results demonstrated incremental validity for ethical development in predicting technical performance, which in turn predicted work performance. The indirect effect of ethical development was significant too. Our results highlight the importance of process models of performance, which include proximal as well as distal individual differences.
Resumo:
Images acquired using optical microscopes are inherently subject to vignetting effects due to imperfect illumination and image acquisition. However, such vignetting effects hamper accurate extraction of quantitative information from biological images, leading to less effective image segmentation and increased noise in the measurements. Here, we describe a rapid and effective method for vignetting correction, which generates an estimate for a correction function from the background fluorescence without the need to acquire additional calibration images. We validate the usefulness of this algorithm using artificially distorted images as a gold standard for assessing the accuracy of the applied correction and then demonstrate that this correction method enables the reliable detection of biologically relevant variation in cell populations. A simple user interface called FlattifY was developed and integrated into the image analysis platform YeastQuant to facilitate easy application of vignetting correction to a wide range of images.
Resumo:
We used exome sequencing of blood DNA in four unrelated patients to identify the genetic basis of metaphyseal chondromatosis with urinary excretion of D-2-hydroxy-glutaric acid (MC-HGA), a rare entity comprising severe chondrodysplasia, organic aciduria, and variable cerebral involvement. No evidence for recessive mutations was found; instead, two patients showed mutations in IDH1 predicting p.R132H and p.R132S as apparent somatic mosaicism. Sanger sequencing confirmed the presence of the mutation in blood DNA in one patient, and in blood and saliva (but not in fibroblast) DNA in the other patient. Mutations at codon 132 of IDH1 change the enzymatic specificity of the cytoplasmic isocitrate dehydrogenase enzyme. They result in increased D-2-hydroxy-glutarate production, α-ketoglutarate depletion, activation of HIF-1α (a key regulator of chondrocyte proliferation at the growth plate), and reduction of N-acetyl-aspartyl-glutamate level in glial cells. Thus, somatic mutations in IDH1 may explain all features of MC-HGA, including sporadic occurrence, metaphyseal disorganization, and chondromatosis, urinary excretion of D-2-hydroxy-glutaric acid, and reduced cerebral myelinization.
Resumo:
Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth.
Resumo:
OBJECTIVES: Because early etiologic identification is critical to select appropriate specific status epilepticus (SE) management, we aim to validate a clinical tool we developed that uses history and readily available investigations to guide prompt etiologic assessment. METHODS: This prospective multicenter study included all adult patients treated for SE of all but anoxic causes from four academic centers. The proposed tool is designed as a checklist covering frequent precipitating factors for SE. The study team completed the checklist at the time the patient was identified by electroencephalography (EEG) request. Only information available in the emergency department or at the time of in-hospital SE identification was used. Concordance between the etiology indicated by the tool and the determined etiology at hospital discharge was analyzed, together with interrater agreement. RESULTS: Two hundred twelve patients were included. Concordance between the etiology hypothesis generated using the tool and the finally determined etiology was 88.7% (95% confidence interval (CI) 86.4-89.8) (κ = 0.88). Interrater agreement was 83.3% (95% CI 80.4-96) (κ = 0.81). SIGNIFICANCE: This tool is valid and reliable for identification early the etiology of an SE. Physicians managing patients in SE may benefit from using it to identify promptly the underlying etiology, thus facilitating selection of the appropriate treatment.
Resumo:
While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.
Resumo:
BACKGROUND: Congenital, nonepidermolytic cornification disorders phenotypically resembling human autosomal recessive ichthyosis have been described in purebred dog breeds, including Jack Russell terrier (JRT) dogs. One cause of gene mutation important to humans and dogs is transposon insertions. OBJECTIVES: To describe an autosomal recessive, severe nonepidermolytic ichthyosis resembling lamellar ichthyosis (LI) in JRT dogs due to insertion of a long interspersed nucleotide element (LINE-1) in the transglutaminase 1 (TGM1) gene. METHODS: Dogs were evaluated clinically, and skin samples were examined by light and electron microscopy. Phenotypic information and genotyping with a canine microsatellite marker suggested TGM1 to be a candidate gene. Genomic DNA samples and cDNA generated from epidermal RNA were examined. Consequences of the mutation were evaluated by Western blotting, quantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme activity from cultured keratinocytes. RESULTS: Affected dogs had generalized severe hyperkeratosis. Histological examination defined laminated to compact hyperkeratosis without epidermolysis; ultrastructurally, cornified envelopes were thin. Affected dogs were homozygous for a 1980-bp insertion within intron 9 of TGM1. The sequence of the insertion was that of a canine LINE-1 element. Quantitative RT-PCR indicated a significant decrease in TGM1 mRNA in affected dogs compared with wild-type. TGM1 protein was markedly decreased on immunoblotting, and membrane-associated enzyme activity was diminished in affected dogs. CONCLUSIONS: Based on morphological and molecular features, this disease is homologous with TGM1-deficient LI in humans, clinically models LI better than the genetically modified mouse and represents its first spontaneous animal model. This is the first reported form of LI due to transposon insertion.