242 resultados para Hand transport component


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polysaccharide sidechains attached to proteins play important roles in cell-cell and receptor-ligand interactions. Variation in the carbohydrate component has been extensively studied for the iron transport protein transferrin, because serum levels of the transferrin isoforms asialotransferrin + disialotransferrin (carbohydrate-deficient transferrin, CDT) are used as biomarkers of excessive alcohol intake. We conducted a genome-wide association study to assess whether genetic factors affect CDT concentration in serum. CDT was measured in three population-based studies: one in Switzerland (CoLaus study, n = 5181) and two in Australia (n = 1509, n = 775). The first cohort was used as the discovery panel and the latter ones served as replication. Genome-wide single-nucleotide polymorphism (SNP) typing data were used to identify loci with significant associations with CDT as a percentage of total transferrin (CDT%). The top three SNPs in the discovery panel (rs2749097 near PGM1 on chromosome 1, and missense polymorphisms rs1049296, rs1799899 in TF on chromosome 3) were successfully replicated , yielding genome-wide significant combined association with CDT% (P = 1.9 × 10(-9), 4 × 10(-39), 5.5 × 10(-43), respectively) and explain 5.8% of the variation in CDT%. These allelic effects are postulated to be caused by variation in availability of glucose-1-phosphate as a precursor of the glycan (PGM1), and variation in transferrin (TF) structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thumb hypoplasia treatment requires considering every component of the maldevelopment. Types II and IIIA hypoplasia share common features such as first web space narrowing, hypoplasia or absence of thenar muscles and metacarpophalangeal joint instability. Many surgical techniques to correct the malformation have been described. We report our surgical strategy that includes modifications of the usual technique that we found useful in reducing morbidity while optimizing the results. A diamond-shape kite flap was used to widen the first web space. Its design allowed primary closure of the donor site using a Dufourmentel flap. The ring finger flexor digitorum superficialis was transferred for opposition transfer, and the same tendon was used to stabilize the metacarpophalangeal joint on its ulnar and/or radial side depending on a uniplanar or more global instability. An omega-shaped K-wire was placed between the first and second metacarpals to maintain a wide opening of the first web space without stressing the reconstructed ulnar collateral ligament of the MCP joint. We report a clinical series of 15 patients (18 thumbs) who had this reconstructive program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher plants, roots acquire water and soil nutrients and transport them upward to their aerial parts. These functions are closely related to their anatomical structure; water and nutrients entering the root first move radially through several concentric layers of the epidermis, cortex, and endodermis before entering the central cylinder. The endodermis is the innermost cortical cell layer that features rings of hydrophobic cell wall material called the Casparian strips, which functionally resemble tight junctions in animal epithelia. Nutrient uptake from the soil can occur through three different routes that can be interconnected in various ways: the apoplastic route (through the cell wall), the symplastic route (through cellular connections), and a coupled trans-cellular route (involving polarized influx and efflux carriers). This Update presents recent advances in the radial transport of nutrients highlighting the coupled trans-cellular pathway and the roles played by the endodermis as a barrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes are highly secretory cells, participating in rapid brain communication by releasing glutamate. Recent evidences have suggested that this process is largely mediated by Ca(2+)-dependent regulated exocytosis of VGLUT-positive vesicles. Here by taking advantage of VGLUT1-pHluorin and TIRF illumination, we characterized mechanisms of glutamate exocytosis evoked by endogenous transmitters (glutamate and ATP), which are known to stimulate Ca(2+) elevations in astrocytes. At first we characterized the VGLUT1-pHluorin expressing vesicles and found that VGLUT1-positive vesicles were a specific population of small synaptic-like microvesicles containing glutamate but which do not express VGLUT2. Endogenous mediators evoked a burst of exocytosis through activation of G-protein coupled receptors. Subsequent glutamate exocytosis was reduced by about 80% upon pharmacological blockade of the prostaglandin-forming enzyme, cyclooxygenase. On the other hand, receptor stimulation was accompanied by extracellular release of prostaglandin E2 (PGE2). Interestingly, administration of exogenous PGE2 produced per se rapid, store-dependent burst exocytosis of glutamatergic vesicles in astrocytes. Finally, when PGE2-neutralizing antibody was added to cell medium, transmitter-evoked exocytosis was again significantly reduced (by about 50%). Overall these data indicate that cyclooxygenase products are responsible for a major component of glutamate exocytosis in astrocytes and that large part of such component is sustained by autocrine/paracrine action of PGE2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, (1)H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, (13)C MRS with the infusion of (13)C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of (13)C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly amiloride-sensitive epithelial sodium channel (ENaC) is an apical membrane constituent of cells of many salt-absorbing epithelia. In the kidney, the functional relevance of ENaC expression has been well established. ENaC mediates the aldosterone-dependent sodium reabsorption in the distal nephron and is involved in the regulation of blood pressure. Mutations in genes encoding ENaC subunits are causative for two human inherited diseases: Liddle's syndrome, a severe form of hypertension associated with ENaC hyperfunction, and pseudohypoaldosteronism (PHA-1), a salt-wasting syndrome caused by decreased ENaC function. Transgenic mouse technologies provide a useful tool to study the role of ENaC in vivo. Different mouse lines have been established in which each of the ENaC subunits was affected. The phenotypes observed in these mice demonstrated that each subunit is essential for survival and for regulation of sodium transport in kidney and colon. Moreover, the alpha subunit plays a specific role in the control of fluid absorption in the airways at birth. Such mice can now be used to study the role of ENaC in various organs and can serve as models to understand the pathophysiology of these human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A maize (Zea mays L. cv LG 11) root homogenate was prepared and centrifuged to sediment the mitochondria. The pellet (6 KP) and the supernatant (6 KS) were collected and fractionated on linear sucrose density gradients. Marker enzymes were used to study the distribution of the different cell membranes in the gradients. The distribution of the ATP- and pyrophosphate-dependent proton pumping activities was similar after 3 hours of centrifugation of the 6 KS or the 6 KP fraction. The pumps were clearly separated from the mitochondrial marker cytochrome c oxidase and the plasmalemma marker UDP-glucose-sterolglucosyl-transferase. The pyrophosphate-dependent proton pump might be associated with the tonoplast, as the ATP-dependent pump, despite the lack of a specific marker for this membrane. However, under all the conditions tested, the two pumps overlapped the Golgi markers latent UDPase and glucan synthase I and the ER marker NADH-cytochrome c reductase. It is therefore not possible to exclude the presence of proton pumping activities on the Golgi or the ER of maize root cells. The two pumps (but especially the pyrophosphate-dependent one) were more active (or more abundant) in the tip than in the basal part of maize roots, indicating that these activities might be important in growth processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cDNA encoding the NH2-terminal 589 amino acids of the extracellular domain of the human polymeric immunoglobulin receptor was inserted into transfer vectors to generate recombinant baculo- and vaccinia viruses. Following infection of insect and mammalian cells, respectively, the resulting truncated protein corresponding to human secretory component (hSC) was secreted with high efficiency into serum-free culture medium. The Sf9 insect cell/baculovirus system yielded as much as 50 mg of hSC/liter of culture, while the mammalian cells/vaccinia virus system produced up to 10 mg of protein/liter. The M(r) of recombinant hSC varied depending on the cell line in which it was expressed (70,000 in Sf9 cells and 85-95,000 in CV-1, TK- 143B and HeLa). These variations in M(r) resulted from different glycosylation patterns, as evidenced by endoglycosidase digestion. Efficient single-step purification of the recombinant protein was achieved either by concanavalin A affinity chromatography or by Ni(2+)-chelate affinity chromatography, when a 6xHis tag was engineered to the carboxyl terminus of hSC. Recombinant hSC retained the capacity to specifically reassociate with dimeric IgA purified from hybridoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A defect in glucose sensing of the pancreatic beta-cells has been observed in several animal models of type II diabetes and has been correlated with a reduced gene expression of the glucose transporter type 2 (Glut2). In a transgenic mouse model, expression of Glut2 antisense RNA in pancreatic beta-cells has recently been shown to be associated with an impaired glucose-induced insulin secretion and the development of diabetes. To identify factors that may be involved in the specific decrease of Glut2 in the beta-cells of the diabetic animal, an attempt was made to localize the cis-elements and trans-acting factors involved in the control of Glut2 expression in the endocrine pancreas. It was demonstrated by transient transfection studies that only 338 base pairs (bp) of the murine Glut2 proximal promoter are needed for reporter gene expression in pancreatic islet-derived cell lines, whereas no activity was detected in nonpancreatic cells. Three cis-elements, GTI, GTII, and GTIII, have been identified by DNAse I footprinting and gel retardation experiments within these 338 bp. GTI and GTIII bind distinct but ubiquitously expressed trans-acting factors. On the other hand, nuclear proteins specifically expressed in pancreatic cell lines interact with GTII, and their relative abundance correlates with endogenous Glut2 expression. These GTII-binding factors correspond to nuclear proteins of 180 and 90 kilodaltons as defined by Southwestern analysis. The 180-kilodalton factor is present in pancreatic beta-cell lines but not in an alpha-cell line. Mutation of the GTI or GTIII cis-elements decreases transcriptional activity directed by the 338-bp promoter, whereas mutation of GTII increases gene transcription. Thus negative and positive regulatory sequences are identified within the proximal 338 bp of the GLUT2 promoter and may participate in the islet-specific expression of the gene by binding beta-cell specific trans-acting factors.