88 resultados para Growth-factor receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) is a pluripotent peptide hormone that regulates various cellular activities, including growth, differentiation, and extracellular matrix protein gene expression. We previously showed that TGF-beta induces the transcriptional activation domain (TAD) of CTF-1, the prototypic member of the CTF/NF-I family of transcription factors. This induction correlates with the proposed role of CTF/NF-I binding sites in collagen gene induction by TGF-beta. However, the mechanisms of TGF-beta signal transduction remain poorly understood. Here, we analyzed the role of free calcium signaling in the induction of CTF-1 transcriptional activity by TGF-beta. We found that TGF-beta stimulates calcium influx and mediates an increase of the cytoplasmic calcium concentration in NIH3T3 cells. TGF-beta induction of CTF-1 is inhibited in cells pretreated with thapsigargin, which depletes the endoplasmic reticulum calcium stores, thus further arguing for the potential relevance of calcium mobilization in TGF-beta action. Consistent with this possibility, expression of a constitutively active form of the calcium/calmodulin-dependent phosphatase calcineurin or of the calcium/calmodulin-dependent kinase IV (DeltaCaMKIV) specifically induces the CTF-1 TAD and the endogenous mouse CTF/NF-I proteins. Both calcineurin- and DeltaCaMKIV-mediated induction require the previously identified TGF-beta-responsive domain of CTF-1. The immunosuppressants cyclosporin A and FK506 abolish calcineurin-mediated induction of CTF-1 activity. However, TGF-beta still induces the CTF-1 TAD in cells treated with these compounds or in cells overexpressing both calcineurin and DeltaCaMKIV, suggesting that other calcium-sensitive enzymes might mediate TGF-beta action. These results identify CTF/NF-I as a novel calcium signaling pathway-responsive transcription factor and further suggest multiple molecular mechanisms for the induction of CTF/NF-I transcriptional activity by growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vertebrates, different isoforms of fibroblast growth factor 2 (FGF2) exist, which differ by their N-terminal extension. They show different localization and expression levels and exert distinct biological effects. Nevertheless, genetic inactivation of all FGF2 isoforms in the mouse results in only mild phenotypes. Here, we analyzed mouse FGF2, and show that, as in the human, mouse FGF2 contains CTG-initiated high molecular-weight (HMW) isoforms, which contain a nuclear localization signal, and which mediate localization of this isoform to the nucleus. Using green fluorescent protein-FGF2 fusions, we furthermore observed, that C-terminal deletions disable nuclear localization of the short low-molecular-weight (LMW) 18-kDa isoform. This loss of specific localization is accompanied by a loss in heparin binding. We therefore suggest that, first, localization of mouse FGF2 is comparable to that in other vertebrates and, second, FGF2 contains at least two sequences important for nuclear localization, a nuclear localization sequence at the N terminus which is only contained in the HMW isoform, and another sequence at the C terminus, which is only required for localization of the LMW 18-kDa isoform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy given in a metronomic manner can be administered with less adverse effects which are common with conventional schedules such as myelotoxicity and gastrointestinal toxicity and thus may be appropriate for older patients and patients with decreased performance status. Efficacy has been observed in several settings. An opportunity to improve the efficacy of metronomic schedules without significantly increasing toxicity presents with the addition of anti-angiogenic targeted treatments. These combinations rational stems from the understanding of the importance of angiogenesis in the mechanism of action of metronomic chemotherapy which may be augmented by specific targeting of the vascular endothelial growth factor (VEGF) pathway by antibodies or small tyrosine kinase inhibitors. Combinations of metronomic chemotherapy schedules with VEGF pathway targeting drugs will be discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A limited number of receptor tyrosine kinases (e.g., ErbB and fibroblast growth factor receptor families) have been genetically linked to breast cancer development. Here, we investigated the contribution of the Ret receptor tyrosine kinase to breast tumor biology. Ret was expressed in primary breast tumors and cell lines. In estrogen receptor (ER)alpha-positive MCF7 and T47D lines, the ligand (glial-derived neurotrophic factor) activated signaling pathways and increased anchorage-independent proliferation in a Ret-dependent manner, showing that Ret signaling is functional in breast tumor cells. Ret expression was induced by estrogens and Ret signaling enhanced estrogen-driven proliferation, highlighting the functional interaction of Ret and ER pathways. Furthermore, Ret was detected in primary cancers, and there were higher Ret levels in ERalpha-positive tumors. In summary, we showed that Ret is a novel proliferative pathway interacting with ER signaling in vitro. Expression of Ret in primary breast tumors suggests that Ret might be a novel therapeutic target in breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acquisition of a mature dendritic morphology is critical for neural information processing. In particular, hepatocyte growth factor (HGF) controls dendritic arborization during brain development. However, the cellular mechanisms underlying the effects of HGF on dendritic growth remain elusive. Here, we show that HGF increases dendritic length and branching of rat cortical neurons through activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of MAPK by HGF leads to the rapid and transient phosphorylation of cAMP response element-binding protein (CREB), a key step necessary for the control of dendritic development by HGF. In addition to CREB phosphorylation, regulation of dendritic growth by HGF requires the interaction between CREB and CREB-regulated transcription coactivator 1 (CRTC1), as expression of a mutated form of CREB unable to bind CRTC1 completely abolished the effects of HGF on dendritic morphology. Treatment of cortical neurons with HGF in combination with brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family that regulates dendritic development via similar mechanisms, showed additive effects on MAPK activation, CREB phosphorylation and dendritic growth. Collectively, these results support the conclusion that regulation of cortical dendritic morphology by HGF is mediated by activation of the MAPK pathway, phosphorylation of CREB and interaction of CREB with CRTC1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor-triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GH-2000 and GH-2004 projects have developed a method for detecting GH misuse based on measuring insulin-like growth factor-I (IGF-I) and the amino-terminal pro-peptide of type III collagen (P-III-NP). The objectives were to analyze more samples from elite athletes to improve the reliability of the decision limit estimates, to evaluate whether the existing decision limits needed revision, and to validate further non-radioisotopic assays for these markers. The study included 998 male and 931 female elite athletes. Blood samples were collected according to World Anti-Doping Agency (WADA) guidelines at various sporting events including the 2011 International Association of Athletics Federations (IAAF) World Athletics Championships in Daegu, South Korea. IGF-I was measured by the Immunotech A15729 IGF-I IRMA, the Immunodiagnostic Systems iSYS IGF-I assay and a recently developed mass spectrometry (LC-MS/MS) method. P-III-NP was measured by the Cisbio RIA-gnost P-III-P, Orion UniQ? PIIINP RIA and Siemens ADVIA Centaur P-III-NP assays. The GH-2000 score decision limits were developed using existing statistical techniques. Decision limits were determined using a specificity of 99.99% and an allowance for uncertainty because of the finite sample size. The revised Immunotech IGF-I - Orion P-III-NP assay combination decision limit did not change significantly following the addition of the new samples. The new decision limits are applied to currently available non-radioisotopic assays to measure IGF-I and P-III-NP in elite athletes, which should allow wider flexibility to implement the GH-2000 marker test for GH misuse while providing some resilience against manufacturer withdrawal or change of assays. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) has been shown to exert cytotoxic effects on tumor cells. We have reported that EC219 cells, a rat-brain-microvessel-derived endothelial cell line, produced NO through cytokine-inducible NO synthase (iNOS), the induction of which was significantly decreased by (a) soluble factor(s) secreted by DHD/PROb, an invasive sub-clone of a rat colon-carcinoma cell line. In this study, the DHD/PROb cell-derived NO-inhibitory factor was characterized. Northern-blot analysis demonstrated that the induction of iNOS mRNA in cytokine-activated EC219 cells was decreased by PROb-cell-conditioned medium. When DHD/PROb cell supernatant was fractionated by affinity chromatography using Con A-Sepharose or heparin-Sepharose, the NO-inhibitory activity was found only in Con A-unbound or heparin-unbound fractions, respectively, indicating that the PROb-derived inhibitory factor was likely to be a non-glycosylated and non-heparin-binding molecule. Pre-incubation of DHD/PROb-cell supernatant with anti-TGF-beta neutralizing antibody completely blocked the DHD/PROb-derived inhibition of NO production by EC219 cells. Addition of exogenous TGF-beta 1 dose-dependently inhibited NO release by EC219 cells. The presence of active TGF-beta in the DHD/PROb cell supernatant was demonstrated using a growth-inhibition assay. Moreover, heat treatment of medium conditioned by the less invasive DHD/REGb cells, which constitutively secreted very low levels of active TGF-beta, increased both TGF-beta activity and the ability to inhibit NO production in EC219 cells. Thus, DHD/PROb colon-carcinoma cells inhibited NO production in EC219 cells by secreting a factor identical or very similar to TGF-beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Compensatory increases in FGF23 with increasing phosphate intake may adversely impact health. However, population and clinical studies examining the link between phosphate intake and FGF23 levels have focused mainly on populations living in highly industrialized societies in which phosphate exposure may be homogenous. OBJECTIVE: Contrast dietary phosphate intake, urinary measures of phosphate excretion and FGF23 levels across populations that differ by level of industrialization. DESIGN: Cross-sectional analysis of three populations Setting: Maywood, IL, U.S., Mah|fe Island, Seychelles, and Kumasi, Ghana Participants: Adults with African ancestry aged 25-45 years Main Outcome: Fibroblast growth factor 23 (FGF23) levels Results: The mean age was 35.1 (6.3) years and 47.9% were male. Mean phosphate intake and fractional excretion of phosphate were significantly higher in the U.S. vs. Ghana while no significant difference in phosphate intake or fractional excretion of phosphate was noted between U.S. and Seychelles for men or women. Overall, median FGF23 values were 57.41 RU/ml (IQR 43.42, 75.09) in U.S., 42.49 RU/ml (IQR 33.06, 55.39) in Seychelles and 33.32 RU/ml (IQR 24.83, 47.36) in Ghana. In the pooled sample, FGF23 levels were significantly and positively correlated with dietary phosphate intake (r=0.11; P < 0.001), and the fractional excretion of phosphate (r=0.13; P < 0.001) but not with plasma phosphate levels (-0.001; P = 0.8). Dietary phosphate intake was significantly and positively associated with the fractional excretion of phosphate (r=0.23; P < 0.001). CONCLUSION: The distribution of FGF23 levels in a given population may be influenced by the level of industrialization, likely due to differences in access to foods preserved with phosphate additives.