83 resultados para Grey Mold


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: « Osteo-Mobile Vaud » is a mobile osteoporosis (OP) screening program. The women > 60 years living in the region Vaud will be offered OP screening with new equipment installed in a bus. The main goal is to evaluate the fracture risk with the combination of clinical risk factors (CRF) and informations extracted by a single DXA: bone mineral density (BMD), vertebral fracture assessment (VFA), and micro-architecture (MA) evaluation. MA is yet evaluable in daily practice by the Trabecular Bone Score (TBS) measure. TBS is a novel grey-level texture measurement reflecting bone MA based on the use of experimental variograms of 2D projection images. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis value, partially independent of CRF and BMD. A 55-years follow- up is planned. Method: The Osteo-Mobile Vaud cohort (1500 women, > 60 years, living in the region Vaud) started in July 2010. CRF for OP, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded. Preliminary results are reported. Results: In July 31th, we evaluated 510 women: mean age 67 years, BMI 26 kg/m². 72 women had one or more fragility fractures, 39 had vertebral fracture (VFx) grade 2/3. TBS decreases with age (-0.005 / year, p<0.001), and with BMI (-0.011 per kg/m², p<0.001). Correlation between BMD and site matched TBS is low (r=0.4, p<0.001). For the lowest T-score BMD, odds ratio (OR, 95% CI) for VFx grade 2/3 and clinical OP Fx are 1.8 (1.1-2.9) and 2.3 (1.5-3.4). For TBS, age-, BMI- and BMD adjusted ORs (per SD decrease) for VFx grade 2/3 and clinical OP Fx are 1.9 (1.2-3.0) and 1.8 (1.2-2.7). The TBS added value was independent of lumbar spine BMD or the lowest T-score (femoral neck, total hip or lumbar spine). Conclusion: As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS and BMD may increase significantly the identification of women with prevalent OP Fx. For the first time we are able to have complementary information about fracture (VFA), density (BMD), and micro-architecture (TBS) from a simple, low ionizing radiation and cheap device: DXA. The value of such informations in a screening program will be evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed 42 models from 14 brands of refill liquids for e-cigarettes for the presence of micro-organisms, diethylene glycol, ethylene glycol, hydrocarbons, ethanol, aldehydes, tobacco-specific nitrosamines, and solvents. All the liquids under scrutiny complied with norms for the absence of yeast, mold, aerobic microbes, Staphylococcus aureus, and Pseudomonas aeruginosa. Diethylene glycol, ethylene glycol and ethanol were detected, but remained within limits authorized for food and pharmaceutical products. Terpenic compounds and aldehydes were found in the products, in particular formaldehyde and acrolein. No sample contained nitrosamines at levels above the limit of detection (1 μg/g). Residual solvents such as 1,3-butadiene, cyclohexane and acetone, to name a few, were found in some products. None of the products under scrutiny were totally exempt of potentially toxic compounds. However, for products other than nicotine, the oral acute toxicity of the e-liquids tested seems to be of minor concern. However, a minority of liquids, especially those with flavorings, showed particularly high ranges of chemicals, causing concerns about their potential toxicity in case of chronic oral exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In sport events like Olympic Games or World Championships competitive athletes keep pushing the boundaries of human performance. Compared to team sports, high achievements in many athletic disciplines depend solely on the individual's performance. Contrasting previous research looking for expertise-related differences in brain anatomy at the group level, we aim to demonstrate changes in individual top athlete's brain, which would be averaged out in a group analysis. We compared structural magnetic resonance images (MRI) of three professional track-and-field athletes to age-, gender- and education-matched control subjects. To determine brain features specific to these top athletes, we tested for significant deviations in structural grey matter density between each of the three top athletes and a carefully matched control sample. While total brain volumes were comparable between athletes and controls, we show regional grey matter differences in striatum and thalamus. The demonstrated brain anatomy patterns remained stable and were detected after 2 years with Olympic Games in between. We also found differences in the fusiform gyrus in two top long jumpers. We interpret our findings in reward-related areas as correlates of top athletes' persistency to reach top-level skill performance over years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. Hum Brain Mapp 36:2527-2543, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive mold infections are life-threatening diseases for which appropriate antifungal therapy is crucial. Their epidemiology is evolving, with the emergence of triazole-resistant Aspergillus spp. and multidrug-resistant non-Aspergillus molds. Despite the lack of interpretive criteria, antifungal susceptibility testing of molds may be useful in guiding antifungal therapy. The standard broth microdilution method (BMD) is demanding and requires expertise. We assessed the performance of a commercialized gradient diffusion method (Etest method) as an alternative to BMD. The MICs or minimal effective concentrations (MECs) of amphotericin B, voriconazole, posaconazole, caspofungin, and micafungin were assessed for 290 clinical isolates of the most representative pathogenic molds (154 Aspergillus and 136 non-Aspergillus isolates) with the BMD and Etest methods. Essential agreements (EAs) within ±2 dilutions of ≥90% between the two methods were considered acceptable. EAs for amphotericin B and voriconazole were >90% for most potentially susceptible species. For posaconazole, the correlation was acceptable for Mucoromycotina but Etest MIC values were consistently lower for Aspergillus spp. (EAs of <90%). Excellent EAs were found for echinocandins with highly susceptible (MECs of <0.015 μg/ml) or intrinsically resistant (MECs of >16 μg/ml) strains. However, MEC determinations lacked consistency between methods for strains exhibiting mid-range MECs for echinocandins. We concluded that the Etest method is an appropriate alternative to BMD for antifungal susceptibility testing of molds under specific circumstances, including testing with amphotericin B or triazoles for non-Aspergillus molds (Mucoromycotina and Fusarium spp.). Additional study of molecularly characterized triazole-resistant Aspergillus isolates is required to confirm the ability of the Etest method to detect voriconazole and posaconazole resistance among Aspergillus spp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Patient-centered care (PCC) has been recognized as a marker of quality in health service delivery. In policy documents, PCC is often used interchangeably with other models of care. There is a wide literature about PCC, but there is a lack of evidence about which model is the most appropriate for maternity services specifically. AIM: We sought to identify and critically appraise the literature to identify which definition of PCC is most relevant for maternity services. METHODS: The four-step approach used to identify definitions of PCC was to 1) search electronic databases using key terms (1995-2011), 2) cross-reference key papers, 3) search of specific journals, and 4) search the grey literature. Four papers and two books met our inclusion criteria. ANALYSIS: A four-criteria critical appraisal tool developed for the review was used to appraise the papers and books. MAIN RESULTS: From the six identified definitions, the Shaller's definition met the majority of the four criteria outlined and seems to be the most relevant to maternity services because it includes physiologic conditions as well as pathology, psychological aspects, a nonmedical approach to care, the greater involvement of family and friends, and strategies to implement PCC. CONCLUSION: This review highlights Shaller's definitions of PCC as the one that would be the most inclusive of all women using maternity services. Future research should concentrate on evaluating programs that support PCC in maternity services, and testing/validating this model of care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detailed in-vivo characterization of subcortical brain structures is essential not only to understand the basic organizational principles of the healthy brain but also for the study of the involvement of the basal ganglia in brain disorders. The particular tissue properties of basal ganglia - most importantly their high iron content, strongly affect the contrast of magnetic resonance imaging (MRI) images, hampering the accurate automated assessment of these regions. This technical challenge explains the substantial controversy in the literature about the magnitude, directionality and neurobiological interpretation of basal ganglia structural changes estimated from MRI and computational anatomy techniques. My scientific project addresses the pertinent need for accurate automated delineation of basal ganglia using two complementary strategies: ? Empirical testing of the utility of novel imaging protocols to provide superior contrast in the basal ganglia and to quantify brain tissue properties; ? Improvement of the algorithms for the reliable automated detection of basal ganglia and thalamus Previous research demonstrated that MRI protocols based on magnetization transfer (MT) saturation maps provide optimal grey-white matter contrast in subcortical structures compared with the widely used Tl-weighted (Tlw) images (Helms et al., 2009). Under the assumption of a direct impact of brain tissue properties on MR contrast my first study addressed the question of the mechanisms underlying the regional specificities effect of the basal ganglia. I used established whole-brain voxel-based methods to test for grey matter volume differences between MT and Tlw imaging protocols with an emphasis on subcortical structures. I applied a regression model to explain the observed grey matter differences from the regionally specific impact of brain tissue properties on the MR contrast. The results of my first project prompted further methodological developments to create adequate priors for the basal ganglia and thalamus allowing optimal automated delineation of these structures in a probabilistic tissue classification framework. I established a standardized workflow for manual labelling of the basal ganglia, thalamus and cerebellar dentate to create new tissue probability maps from quantitative MR maps featuring optimal grey-white matter contrast in subcortical areas. The validation step of the new tissue priors included a comparison of the classification performance with the existing probability maps. In my third project I continued investigating the factors impacting automated brain tissue classification that result in interpretational shortcomings when using Tlw MRI data in the framework of computational anatomy. While the intensity in Tlw images is predominantly