94 resultados para Graph usage
Resumo:
After incidentally learning about a hidden regularity, participants can either continue to solve the task as instructed or, alternatively, apply a shortcut. Past research suggests that the amount of conflict implied by adopting a shortcut seems to bias the decision for vs. against continuing instruction-coherent task processing. We explored whether this decision might transfer from one incidental learning task to the next. Theories that conceptualize strategy change in incidental learning as a learning-plus-decision phenomenon suggest that high demands to adhere to instruction-coherent task processing in Task 1 will impede shortcut usage in Task 2, whereas low control demands will foster it. We sequentially applied two established incidental learning tasks differing in stimuli, responses and hidden regularity (the alphabet verification task followed by the serial reaction task, SRT). While some participants experienced a complete redundancy in the task material of the alphabet verification task (low demands to adhere to instructions), for others the redundancy was only partial. Thus, shortcut application would have led to errors (high demands to follow instructions). The low control demand condition showed the strongest usage of the fixed and repeating sequence of responses in the SRT. The transfer results are in line with the learning-plus-decision view of strategy change in incidental learning, rather than with resource theories of self-control.
Resumo:
BACKGROUND: The objective measurement of dominant/nondominant arm use proportion in daily life may provide relevant information on healthy and pathologic arm behavior. This prospective case-control study explored the potential of such measurements as indicators of upper limb functional recovery after rotator cuff surgery. METHODS: Data on dominant/nondominant arm usage were acquired with body-worn sensors for 7 hours. The postsurgical arm usage of 21 patients was collected at 3, 6, and 12 months after rotator cuff surgery in the sitting, walking, and standing postures and compared with a reference established with 41 healthy subjects. The results were calculated for the dominant and nondominant surgical side subgroups at all stages. The correlations with clinical scores were calculated. RESULTS: Healthy right-handed and left-handed dominant arm usage was 60.2% (±6.3%) and 53.4% (±6.6%), respectively. Differences in use of the dominant side were significant between the right- and left-handed subgroups for sitting (P = .014) and standing (P = .009) but not for walking (P = .328). The patient group showed a significant underuse of 10.7% (±8.9%) at 3 months after surgery (P < .001). The patients recovered normal arm usage within 12 months, regardless of surgical side. The arm underuse measurement was weakly related to function and pain scores. CONCLUSION: This study provided new information on arm recovery after rotator cuff surgery using an innovative measurement method. It highlighted that objective arm underuse measurement is a valuable indicator of upper limb postsurgical outcome that captures a complementary feature to clinical scores.
Resumo:
CERN-MEDICIS (Medical Isotopes Collected from ISOLDE) est une plateforme de recherche destinée à la production de radioisotopes biomédicaux. Inauguré en 2014, il produira progressivement un nombre croissant de radioisotopes grâce au faisceau de protons ISOLDE déjà existant. Ce projet réunit des spécialistes du cancer, des chirurgiens, des experts en médecine nucléaire, en radiochimie et radiopharmacie et les scientifiques du CERN. Les radioisotopes ainsi produits seront destinés à la recherche fondamentale contre le cancer, à des études précliniques ainsi qu'au développement de protocoles d'imagerie et de thérapie destinés aux patients.Le CERN, les HUG, le CHUV, l'ISREC et l'EPFL qui soutiennent ce projet seront les premiers bénéficiaires de ces radioisotopes novateurs dont la distribution sera ensuite étendue à d'autres centres européens. CERN-MEDICIS is a facility dedicated to research and development in life science and medical applications. The research platform was inaugurated in October 2014 and will produce an increasing range of innovative isotopes using the proton beam of ISOLDE for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for preclinical trials, possibly extended to specific early phase clinical studies (phase 0) up to phase I trials. CERN, the University Hospital of Geneva (HUG), the University Hospital of Lausanne (CHUV), the Swiss Institute for Experimental Cancer (ISREC) at Swiss Federal Institutes of Technology (EPFL) that currently support the project will benefit of the initial production that will then be extended to other centers.