346 resultados para Functional orthopedics
Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients.
Resumo:
BACKGROUND: Bioengineered skin substitutes are increasingly considered as a useful option for the treatment of full thickness burn injury. Their viability following grafting can be enhanced by seeding the skin substitute with late outgrowth endothelial progenitor cells (EPCs). However, it is not known whether autologous EPCs can be obtained from burned patients shortly after injury. METHODS: Late outgrowth EPCs were isolated from peripheral blood sampled obtained from 10 burned patients (extent 19.6±10.3% TBSA) within the first 24h of hospital admission, and from 7 healthy subjects. Late outgrowth EPCs were phenotyped in vitro. RESULTS: In comparison with similar cells obtained from healthy subjects, growing colonies from burned patients yielded a higher percentage of EPC clones (46 versus 17%, p=0.013). Furthermore, EPCs from burned patients secreted more vascular endothelial growth factor (VEGF) into the culture medium than did their counterparts from healthy subjects (85.8±56.2 versus 17.6±14pg/mg protein, p=0.018). When injected to athymic nude mice 6h after unilateral ligation of the femoral artery, EPCs from both groups of subjects greatly accelerated the reperfusion of the ischaemic hindlimb and increased the number of vascular smooth muscle cells. CONCLUSIONS: The present study supports that, in patients with burns of moderate extension, it is feasible to obtain functional autologous late outgrowth EPCs from peripheral blood. These results constitute a strong incentive to pursue approaches based on using autotransplantation of these cells to improve the therapy of full thickness burns.
Resumo:
The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.
Resumo:
Peroxisome proliferator-activated receptor (PPARs) are members of the nuclear receptor superfamily. For transcriptional activation of their target genes, PPARs heterodimerize with the retinoid-X receptor (RXR). The convergence of the PPAR and RXR signaling pathways has been shown to have an important function in lipid metabolism. The promoter of the gene encoding the acyl-coenzyme-A oxidase (ACO), the rate-limiting enzyme in peroxisomal beta-oxidation of fatty acids, is a target site of PPAR action. In this study, we examined the role and the contribution of both cis-and trans-acting factors in the transcriptional regulation of this gene using transient transfections in insect cells. We identified several functional cis-acting elements present in the promoter of the ACO gene and established that PPAR-dependent as well as PPAR-independent mechanisms can activate the ACO promoter in these cells. We show that the PPAR/RXR heterodimer exerts its effect through two response elements within the ACO promoter, in synergy with the transcription factor Sp1 via five Sp1-binding sites. Furthermore, this functional interaction also occurs when Sp1 is co-expressed with PPAR or RXR alone, indicating that activation can occur independently of PPAR/RXR heterodimers.
Resumo:
Background: One characteristic of post traumatic stress disorder is an inability to adapt to a safe environment i.e. to change behavior when predictions of adverse outcomes are not met. Recent studies have also indicated that PTSD patients have altered pain processing, with hyperactivation of the putamen and insula to aversive stimuli (Geuze et al, 2007). The present study examined neuronal responses to aversive and predicted aversive events. Methods: Twenty-four trauma exposed non-PTSD controls and nineteen subjects with PTSD underwent fMRI imaging during a partial reinforcement fear conditioning paradigm, with a mild electric shock as the unconditioned stimuli (UCS). Three conditions were analyzed: actual presentations of the UCS, events when a UCS was expected, but omitted (CS+), and events when the UCS was neither expected nor delivered (CS-). Results: The UCS evoked significant alterations in the pain matrix consisting of the brainstem, the midbrain, the thalamus, the insula, the anterior and middle cingulate and the contralateral somatosensory cortex. PTSD subjects displayed bilaterally elevated putamen activity to the electric shock, as compared to controls. In trials when USC was expected, but omitted, significant activations were observed in the brainstem, the midbrain, the anterior insula and the anterior cingulate. PTSD subjects displayed similar activations, but also elevated activations in the amygdala and the posterior insula. Conclusions: These results indicate altered fear and safety learning in PTSD, and neuronal activations are further explored in terms of functional connectivity using psychophysiological interaction analyses.
Resumo:
BACKGROUND: Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). METHODS AND FINDINGS: We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. CONCLUSIONS: Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.
Resumo:
PURPOSE: To report both the functional and anatomic outcome and safety profile of 23-gauge pars plana vitrectomy combined with membrane peeling and intravitreal injection of triamcinolone acetonide in eyes with idiopathic macular epiretinal membranes. METHODS: Retrospective study of 39 consecutive patients who underwent 23-gauge transconjunctival sutureless vitrectomy, membrane peeling, and intravitreal triamcinolone acetonide injection for an idiopathic macular epiretinal membrane between February 2007 and February 2008. Minimum follow-up was 6 months. RESULTS: Thirty-nine eyes of 39 patients were included in the study. The mean follow-up was 7 +/- 2.2 months (range, 6-15 months). Twenty-two eyes (56%) were pseudophakic and 17 (44%) were phakic at the time of surgery. Five of the phakic eyes (29.4%) had worsening of cataracts during the follow-up period. Mean preoperative intraocular pressure was 14 +/- 3.5 mmHg. At the final follow-up, mean intraocular pressure was 14.5 +/- 2.7 mmHg, which did not differ significantly from the intraocular pressure at baseline (P = 0.14, two-tailed t-test). Five (13%) patients needed topical antiglaucoma treatment. Mean preoperative best-corrected visual acuity (BCVA) was 0.28 decimal equivalent (20/71 Snellen equivalent; logarithm of the minimum angle of resolution 0.54 +/- 0.2, range: 1.0-0.2) and improved significantly (P < 0.0001, two-tailed t-test) to a mean of 0.6 decimal equivalent (20/33 Snellen equivalent; logarithm of the minimum angle of resolution 0.22 +/- 0.16, range: 0.6-0) at the final follow-up. The BCVA improved by a mean of 3.2 +/- 2.1 lines (range: 0-8). Twenty-nine patients (74%) demonstrated a gain of > or =3 lines. Mean central macular thickness was 456 +/- 77 microm (mean +/- SD) at baseline, which was significantly reduced at the final follow-up to 327 +/- 79 microm (mean +/- SD; P < 0.0001, two-tailed t-test). Average central macular thickness reduction was 131 +/- 77 microm (mean +/- SD; range: 36-380 microm). A subgroup analysis of 15 selected cases, which had central macular thickness and BCVA measurements after the first postoperative week, demonstrated that 84% of the total final reduction in central macular thickness and 84% of the total final improvement in BCVA occurred already during the first postoperative week. CONCLUSION: Twenty-three-gauge sutureless transconjunctival vitrectomy is a safe and effective technique for the treatment of idiopathic macular epiretinal membranes. The concomitant administration of intravitreal triamcinolone acetonide after pars plana vitrectomy may speed up and improve the anatomic and functional outcome.
Resumo:
Analyzing functional data often leads to finding common factors, for which functional principal component analysis proves to be a useful tool to summarize and characterize the random variation in a function space. The representation in terms of eigenfunctions is optimal in the sense of L-2 approximation. However, the eigenfunctions are not always directed towards an interesting and interpretable direction in the context of functional data and thus could obscure the underlying structure. To overcome such difficulty, an alternative to functional principal component analysis is proposed that produces directed components which may be more informative and easier to interpret. These structural components are similar to principal components, but are adapted to situations in which the domain of the function may be decomposed into disjoint intervals such that there is effectively independence between intervals and positive correlation within intervals. The approach is demonstrated with synthetic examples as well as real data. Properties for special cases are also studied.
Resumo:
Immune protection from infectious diseases and cancer is mediated by individual T cells of different clonal origin. Their functions are tightly regulated but not yet fully characterized. Understanding the contribution of each T cell will improve the prediction of immune protection based on laboratory assessment of T-cell responses. Here we developed techniques for simultaneous molecular and functional assessment of single CD8 T cells directly ex vivo. We studied two groups of patients with melanoma after vaccination with two closely related tumor antigenic peptides. Vaccination induced T cells with strong memory and effector functions, as found in virtually all T cells of the first patient group, and fractions of T cells in the second group. Interestingly, high functionality was not restricted to dominant clonotypes. Rather, dominant and nondominant clonotypes acquired equal functional competence. In parallel, this was also found for EBV- and CMV-specific T cells. Thus, the nondominant clonotypes may contribute similarly to immunity as their dominant counterparts.
Resumo:
Building on our discovery that mutations in the transmembrane serine protease, TMPRSS3, cause nonsyndromic deafness, we have investigated the contribution of other TMPRSS family members to the auditory function. To identify which of the 16 known TMPRSS genes had a strong likelihood of involvement in hearing function, three types of biological evidence were examined: 1) expression in inner ear tissues; 2) location in a genomic interval that contains a yet unidentified gene for deafness; and 3) evaluation of hearing status of any available Tmprss knockout mouse strains. This analysis demonstrated that, besides TMPRSS3, another TMPRSS gene was essential for hearing and, indeed, mice deficient for Hepsin (Hpn) also known as Tmprss1 exhibited profound hearing loss. In addition, TMPRSS2, TMPRSS5, and CORIN, also named TMPRSS10, showed strong likelihood of involvement based on their inner ear expression and mapping position within deafness loci PKSR7, DFNB24, and DFNB25, respectively. These four TMPRSS genes were then screened for mutations in affected members of the DFNB24 and DFNB25 deafness families, and in a cohort of 362 sporadic deaf cases. This large mutation screen revealed numerous novel sequence variations including three potential pathogenic mutations in the TMPRSS5 gene. The mutant forms of TMPRSS5 showed reduced or absent proteolytic activity. Subsequently, TMPRSS genes with evidence of involvement in deafness were further characterized, and their sites of expression were determined. Tmprss1, 3, and 5 proteins were detected in spiral ganglion neurons. Tmprss3 was also present in the organ of Corti. TMPRSS1 and 3 proteins appeared stably anchored to the endoplasmic reticulum membranes, whereas TMPRSS5 was also detected at the plasma membrane. Collectively, these results provide evidence that TMPRSS1 and TMPRSS3 play and TMPRSS5 may play important and specific roles in hearing.
Resumo:
Memory CD4 T cell responses are functionally and phenotypically heterogeneous. In the present study, memory CD4 T cell responses were analyzed in different models of Ag-specific immune responses differing on Ag exposure and/or persistence. Ag-specific CD4 T cell responses for tetanus toxoid, HSV, EBV, CMV, and HIV-1 were compared. Three distinct patterns of T cell response were observed. A dominant single IL-2 CD4 T cell response was associated with the model in which the Ag can be cleared. Polyfunctional (single IL-2 plus IL-2/IFN-gamma plus single IFN-gamma) CD4 T cell responses were associated with Ag persistence and low Ag levels. A dominant single IFN-gamma CD4 T cell response was associated with the model of Ag persistence and high Ag levels. The results obtained supported the hypothesis that the different patterns observed were substantially influenced by different conditions of Ag exposure and persistence.