243 resultados para FACTOR-XII GENE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PSIP1 (PC4 and SFRS1 interacting protein 1) encodes two splice variants: lens epithelium-derived growth factor or p75 (LEDGF/p75) and p52. PSIP1 gene products were shown to be involved in transcriptional regulation, affecting a plethora of cellular processes, including cell proliferation, cell survival, and stress response. Furthermore, LEDGF/p75 has implications for various diseases and infections, including autoimmunity, leukemia, embryo development, psoriasis, and human immunodeficiency virus integration. Here, we reported the first characterization of the PSIP1 promoter. Using 5' RNA ligase-mediated rapid amplification of cDNA ends, we identified novel transcription start sites in different cell types. Using a luciferase reporter system, we identified regulatory elements controlling the expression of LEDGF/p75 and p52. These include (i) minimal promoters (-112/+59 and +609/+781) that drive the basal expression of LEDGF/p75 and of the shorter splice variant p52, respectively; (ii) a sequence (+319/+397) that may control the ratio of LEDGF/p75 expression to p52 expression; and (iii) a strong enhancer (-320/-207) implicated in the modulation of LEDGF/p75 transcriptional activity. Computational, biochemical, and genetic approaches enabled us to identify the transcription factor Sp1 as a key modulator of the PSIP1 promoter, controlling LEDGF/p75 transcription through two binding sites at -72/-64 and -46/-36. Overall, our results provide initial data concerning LEDGF/p75 promoter regulation, giving new insights to further understand its biological function and opening the door for new therapeutic strategies in which LEDGF/p75 is involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: To report the clinical, histopathological and immunohistochemical findings of two novel mutations within the TGFBI gene. METHODS: The genotype of 41 affected members of 16 families and nine sporadic cases was investigated by direct sequencing of the TGFBI gene. Clinical, histological and immunohistochemical characteristics of corneal opacification were reported and compared with the coding region changes in the TGFBI gene. RESULTS: A novel mutation Leu509Pro was detected in one family with a geographic pattern-like clinical phenotype. Histopathologically we found amyloid together with non-amyloid deposits and immunohistochemical staining of Keratoepithelin (KE) KE2 and KE15 antibodies. In two families and one sporadic case the novel mutation Gly623Arg with a late-onset, map-like corneal dystrophy was identified. Here amyloid and immunohistochemical staining of only KE2 antibodies occurred. Further, five already known mutations are reported: Arg124Cys Arg555Trp Arg124His His626Arg, Ala546Asp in 13 families and five sporadic cases of German origin. The underlying gene defect within the TBFBI gene was not identified in any of the four probands with Thiel-Behnke corneal dystrophy. CONCLUSIONS: The two novel mutations within the TGFBI gene add another two phenotypes with atypical immunohistochemical and histopathological features to those so far reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the pathogenesis of type I diabetes mellitus, activated leukocytes infiltrate pancreatic islets and induce beta cell dysfunction and destruction. Interferon (IFN)-gamma, tumor necrosis factor-alpha and interleukin (IL)-1 beta play important, although not completely defined, roles in these mechanisms. Here, using the highly differentiated beta Tc-Tet insulin-secreting cell line, we showed that IFN-gamma dose- and time-dependently suppressed insulin synthesis and glucose-stimulated secretion. As described previously IFN-gamma, in combination with IL-1 beta, also induces inducible NO synthase expression and apoptosis (Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000) J. Biol. Chem. 275, 37672--37678). To assess the role of the Janus kinase/signal transducer and activator of transcription (STAT) pathway in IFN-gamma intracellular signaling, we stably overexpressed SOCS-1 (suppressor of cytokine signaling-1) in the beta cell line. We demonstrated that SOCS-1 suppressed cytokine-induced STAT-1 phosphorylation and increased cellular accumulation. This was accompanied by a suppression of the effect of IFN-gamma on: (i) reduction in insulin promoter-luciferase reporter gene transcription, (ii) decrease in insulin mRNA and peptide content, and (iii) suppression of glucose-stimulated insulin secretion. Furthermore, SOCS-1 also suppressed the cellular effects that require the combined presence of IL-1 beta and IFN-gamma: induction of nitric oxide production and apoptosis. Together our data demonstrate that IFN-gamma is responsible for the cytokine-induced defect in insulin gene expression and secretion and that this effect can be completely blocked by constitutive inhibition of the Janus kinase/STAT pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Insulin-like growth factor-I (IGF-I) is an important regulator of fetal growth and its bioavailability depends on insulin-like growth factor binding proteins (IGFBPs). Genes coding for IGF-I and IGFBP3 are polymorphic. We hypothesized that either amniotic fluid protein concentration at the beginning of the second trimester or genotype of one of these two genes could be predictive of abnormal fetal growth. STUDY DESIGN: Amniotic fluid samples (14-18 weeks of pregnancy) from 123 patients with appropriate for gestational age (AGA) fetuses, 39 patients with small for gestational age (SGA) fetuses and 34 patients with large for gestational age (LGA) were analyzed. Protein concentrations were evaluated by ELISA and gene polymorphisms by PCR. RESULTS: Amniotic fluid IGFBP3 concentrations were significantly higher in SGA compared to AGA group (P=0.030), and this was even more significant when adjusted to gestational age at the time of amniocentesis and other covariates (ANCOVA analysis: P=0.009). Genotypic distribution of IGF-I variable number of tandem repeats (VNTR) polymorphism was significantly different in SGA compared to AGA group (P=0.029). 19CA/20CA genotype frequency was threefold decreased in SGA compared to AGA group and the risk of SGA occurrence of this genotype was decreased accordingly: OR=0.289, 95%CI=0.1-0.9, P=0.032. Genotype distribution of IGFBP3(A-202C) polymorphism was similar in all three groups. CONCLUSIONS: High IGFBP3 concentrations in amniotic fluid at the beginning of the second trimester are associated with increased risks of SGA while 19CA/20CA genotype at IGF-I VNTR polymorphism is associated with reduced risks of SGA. Neither IGFBP3 concentrations, nor IGF-I/IGFBP3 polymorphisms are associated with modified risks of LGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Régulation de l'expression de la Connexin36 dans les cellules sécrétrices d'insuline La communication intercellulaire est en partie assurée via des jonctions communicantes de type "gap". Dans la cellule ß pancréatique, plusieurs observations indiquent que le couplage assuré par des jonctions gap formées parla Connexine36 (Cx36) est impliqué dans le contrôle de la sécrétion de l'insuline. De plus, nous avons récemment démontré qu'un niveau précis d'expression de la Cx36 est nécessaire pour maintenir une bonne coordination de l'ensemble des cellules ß, et permettre ainsi une sécrétion synchrone et contrôlée d'insuline. Le développement du diabète et du syndrome métabolique est partiellement dû à une altération de la capacité des cellules ß à sécréter de l'insuline en réponse à une augmentation de la glycémie. Cette altération est en partie causée par l'augmentation prolongée des taux circulant de glucose, mais aussi de lipides, sous la forme d'acides gras libres, et de LDL (Low Density Lipoproteins), particules assurant le transport des acides gras et du cholestérol dans le sang. Nous avons étudié la régulation de l'expression de la Cx36 dans différentes conditions reflétant la physiopathologie du diabète de type 2 et du syndrome métabolique et démontré qu'une exposition prolongée à des concentrations élevées de glucose, de LDL, ainsi que de palmitate (acide gras saturé le plus abondant dans l'organisme), inhibent l'expression de la Cx36 dans les cellules ß. Cette inhibition implique l'activation de la PKA (Proteine Kinase A), qui stimule à son tour l'expression du facteur de transcription ICER-1 (Inductible cAMP Early Repressor-1). Ce puissant répresseur se fixe spécifiquement sur un motif CRE (cAMP Response Element), situé dans le promoteur du gène de la Cx36, inhibant ainsi son expression. Nous avons de plus démontré que des cytokines pro-inflammatoires, qui pourraient contribuer au développement du diabète, inhibent également l'expression de la Cx36. Cependant, les cytokines agissent indépendamment du répresseur ICER-1, mais selon un mécanisme requérant l'activation de l'AMPK (AMP dependant protein kinase). Sachant qu'un contrôle précis des niveaux d'expression de la Cx36 est un élément déterminant pour une sécrétion optimale de l'insuline, nos résultats suggèrent que la Cx36 pourrait être impliquée dans l'altération de la sécrétion de l'insuline contribuant à l'apparition du diabète de type 2. Summary A particular way by which cells communicate with each other is mediated by gap junctions, transmembrane structures providing a direct pathway for the diffusion of small molecules between adjacent cells. Gap junctional communication is required to maintain a proper functioning of insulin-secreting ß-cells. Moreover, the expression levels of connexin36 (Cx36), the sole gap junction protein expressed in ß-cells, are critical in maintaining glucose-stimulated insulin secretion. Chronic hyperglycemia and hyperlipidemia exert deleterious effects on insulin secretion and may contribute to the progressive ß-cell failure linked to the development of type 2 diabetes and metabolic syndrome. Since modulations of the Cx36 levels might impair ß-cell function, the general aim of this work was to elucidate wether elevated levels of glucose and lipids affect Cx36 expression. The first part of this work was dedicated to the study of the effect of high glucose concentrations on Cx36 expression. We demonstrated that glucose transcriptionally down-regulates the expression of Cx36 in insulin-secreting cells through activation of the protein kinase A (PKA), which in turn stimulates the expression of the inducible cAMP early repressor-1 (ICER-1). This repressor binds to a highly conserved cAMP response element (CRE) located in the Cx36 promoter, thereby inhibiting Cx36 expression. The second part of this thesis consisted in studying the effects of sustained exposure to free fatty acids (FFA) and human lipoproteins on Cx36 levels. The experiments revealed that the most abundant FFA, palmitate, as well as the atherogenic low density lipoproteins (LDL), also stimulate ICER-1 expression, resulting in Cx36 down-regulation. Finally, the third part of the work focused on the consequences of long-term exposure to proinflammatory cytokines on Cx36 content. Interleukin-1 ß (IL-1 ß) inhibits Cx36 expression and its effect is potentialized by tumor necrosis factor α (TNFα) and interferon γ (IFNγ). We further unveiled that the cytokines effect on Cx36 levels requires activation of the AMP dependent protein kinase (AMPK). Prolonged exposures to glucose, palmitate, LDL, and pro-inflammatory cytokines have all been proposed to contribute to the development of diabetes and metabolic syndrome. Since Cx36 expression levels are critical to maintain ß-cell function, Cx36 down-regulation by glucose, lipids, and cytokines might participate to the ß-cell failure associated with diabetes development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the Ly-49 gene family code for class I MHC-specific receptors that regulate NK cell function. Due to a combinatorial distribution of Ly-49 receptors, NK cells display considerable clonal heterogeneity. The acquisition of one Ly-49 receptor, Ly-49A is strictly dependent on the transcriptional trans-acting factor T cell-specific factor-1 (TCF-1). Indeed, TCF-1 binds to two sites in the Ly-49a promoter and regulates its activity, suggesting that the Ly-49a gene is a direct TCF-1 target. TCF-1 deficiency resulted in the altered usage of additional Ly-49 receptors. We show in this study, using TCF-1 beta(2)-microglobulin double-deficient mice, that these repertoire alterations are not due to Ly-49/MHC class I interactions. Our findings rather suggest a TCF-1-dependent, cell autonomous effect on the acquisition of multiple Ly-49 receptors. Besides reduced receptor usage (Ly-49A and D), we also observed no effect (Ly-49C) and significantly expanded (Ly-49G and I) receptor usage in the absence of TCF-1. These effects did not in all cases correlate with the presence of TCF binding sites in the respective proximal promoter. Therefore, besides TCF-1 binding to the proximal promoter, Ly-49 acquisition may also be regulated by TCF-1 binding to more distant cis-acting elements and/or by regulating the expression of additional trans-acting factors. Consistent with the observed differential, positive or negative role of TCF-1 for Ly-49 receptor acquisition, reporter gene assays revealed the presence of an inducing as well as a repressing TCF site in certain proximal Ly-49 promoters. These findings reveal an important role of TCF-1 for the formation of the NK cell receptor repertoire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: After age, sex is the most important risk factor for coronary artery disease (CAD). The mechanism through which women are protected from CAD is still largely unknown, but the observed sex difference suggests the involvement of the reproductive steroid hormone signaling system. Genetic association studies of the gene-encoding Estrogen Receptor α (ESR1) have shown conflicting results, although only a limited range of variation in the gene has been investigated. METHODS AND RESULTS: We exploited information made available by advanced new methods and resources in complex disease genetics to revisit the question of ESR1's role in risk of CAD. We performed a meta-analysis of 14 genome-wide association studies (CARDIoGRAM discovery analysis, N=≈87,000) to search for population-wide and sex-specific associations between CAD risk and common genetic variants throughout the coding, noncoding, and flanking regions of ESR1. In addition to samples from the MIGen (N=≈6000), WTCCC (N=≈7400), and Framingham (N=≈3700) studies, we extended this search to a larger number of common and uncommon variants by imputation into a panel of haplotypes constructed using data from the 1000 Genomes Project. Despite the widespread expression of ERα in vascular tissues, we found no evidence for involvement of common or low-frequency genetic variation throughout the ESR1 gene in modifying risk of CAD, either in the general population or as a function of sex. CONCLUSIONS: We suggest that future research on the genetic basis of sex-related differences in CAD risk should initially prioritize other genes in the reproductive steroid hormone biosynthesis system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thymus is the site of T cell development. Several stromal and hematopoietic cell types are necessary for the proper function of thymic selection and eventually peripheral immunity. Thymic epithelial cells (TECs) are essential for T cell lineage commitment, expansion, and maturation in the thymus. We were interested in developing an in vivo model in which exogenous gene expression could be transiently induced in embryonic TEC (Tet-On system). To this end, we have generated a bacterial artificial chromosome (BAC) transgenic mouse line in which the reverse tetracycline-dependent transactivator (rtTA) is expressed under the control of the Foxn1 promoter, a transcriptional factor indispensable for TEC development. To analyze the expression pattern and efficiency of this novel mouse model, we crossed the Foxn1-rtTA founder with a Tet-Responsive Element (TRE)-LacZ GFP mouse reporter to obtain a double transgenic mouse. In the presence of doxycycline, rtTA can interact with TRE and induce the expression of GFP and LacZ. In this double transgenic mouse, we observed that GFP expression was high, inducible and limited to TEC in fetal thymus. In contrast, in adult thymus, when TEC development and maturation is completed, GFP was barely detectable. Therefore, Foxn1-rtTA represents a new and efficient transgenic mouse model to induce genes of interest specifically in fetal thymic epithelium. genesis 51:717-724. © 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remyelination can be studied in aggregating rat brain cell cultures after limited demyelination. Demyelination was induced using a monoclonal antibody against myelin/oligodendrocyte glycoprotein (MOG mAb), in the presence of complement. De- and remyelination were assessed by measuring myelin basic protein (MBP). Two days after removing the MOG mAb, MBP levels reached 50% of controls and after 7 days 93%. During this period, cell proliferation determined by [14C]thymidine incorporation was similar in remyelinating and control cultures. Hormones and growth factors were tested for possible stimulatory effect on remyelinating cultures. Bovine growth hormone (bGH), triiodothyronine (T3), basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) did not improve remyelination. Only epidermal growth factor (EGF) increased the level of remyelination. PDGF increased the rate of cell proliferation in both control and remyelinating cultures. A significant proportion of oligodendrocytes entered the cell division cycle and were not available for remyelination. The results obtained with PDGF and FGF (inhibition) support the idea that a pool of progenitor cells was still present and able to proliferate and differentiate into myelinating oligodendrocytes. The levels of myelin protein mRNAs were investigated during de- and remyelination. During demyelination, myelin protein mRNA levels decreased to approximately 50% of control cultures and returned to normal during remyelination. These preliminary results indicate that normal levels of gene transcription are sufficient to meet the increased need for newly synthesized myelin proteins during remyelination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kaposiform hemangioendothelioma (KHE) and tufted angioma (TA) are rare tumors mainly occurring in early childhood. Our recent results showed that ectopic overexpression of human Prox1 gene, a lymphatic endothelial nuclear transcription factor, promoted an aggressive behavior in 2 murine models of KHE. This dramatic Prox1-induced phenotype prompted us to investigate immunohistochemical staining pattern of Prox1, podoplanin (D2-40), LYVE-1, and Prox1/CD34 as well as double immunofluorescent staining pattern of LYVE-1/CD31 in KHE and TA, compared with other pediatric vascular tumors. For this purpose, we examined 75 vascular lesions: KHE (n=18), TA (n=13), infantile hemangioma (n=13), pyogenic granuloma (n=18), and granulation tissue (n=13). Overall, KHE and TA shared an identical endothelial immunophenotype: the neoplastic spindle cells were Prox1, podoplanin, LYVE-1, CD31, and CD34, whereas endothelial cells within glomeruloid foci were Prox1, podoplanin, LYVE-1, CD31, and CD34. The lesional cells of all infantile hemangiomas and pyogenic granulomas were negative for Prox1 in the presence of positive internal control. These findings provide immunophenotypic evidence to support a preexisting notion that KHE and TA are closely related, if not identical. Overall, our results show, for the first time, that Prox1 is an immunohistochemical biomarker helpful in confirming the diagnosis of KHE/TA and in distinguishing it from infantile hemangioma and pyogenic granuloma.