103 resultados para Edge detection method
Resumo:
PURPOSE: The diagnosis of leptomeningeal metastases is usually confirmed by the finding of malignant cells by cytologic examination in the cerebrospinal fluid (CSF). More sensitive and specific cancer biomarkers may improve the detection of tumor cells in the CSF. Promoter methylation of the human telomerase reverse transcriptase (hTERT) gene characterizes most cancer cells. The aim of this study was to develop a sensitive method to detect hTERT methylation and to explore its use as a cancer biomarker in CSF. EXPERIMENTAL DESIGN: In 77 CSF specimens from 67 patients, hTERT promoter methylation was evaluated using real-time methylation-sensitive high-resolution melting (MS-HRM) and real-time TaqMan PCR and MS-HRM in a single-tube assay. RESULTS: Real-time MS-HRM assay was able to detect down to 1% hTERT-methylated DNA in a background of unmethylated DNA. PCR products were obtained from 90% (69/77) of CSF samples. No false positive hTERT was detected in the 21 non-neoplastic control cases, given to the method a specificity of 100%. The sensitivity of the real-time MS-HRM compared with the cytologic gold standard analysis was of 92% (11/12). Twenty-six CSFs from 22 patients with an hTERT-methylated primary tumor showed cytologic results suspicious for malignancy; in 17 (65%) of them, a diagnosis of leptomeningeal metastases could be confirmed by the hTERT methylation test. CONCLUSION: The hTERT real-time MS-HRM approach is fast, specific, sensitive, and could therefore become a valuable tool for diagnosis of leptomeningeal metastases as an adjunct to the traditional examination of CSF. Clin Cancer Res; 19(8); 2216-23. ©2013 AACR.
Resumo:
To gain further insights into the role of T lymphocytes in immune responses against bladder tumors, we developed a method that monitors the presence of functional antigen-specific T cells in the urine of non-muscle invasive bladder cancer patients. As relatively few immune cells can usually be recovered from urine, we examined different isolation/amplification protocols and took advantage of patients treated with weekly intravesical instillations of Bacillus Calmette-Guérin, resulting in large amounts of immune cells into urine. Our findings demonstrate that, upon in vitro amplification, antigen-specific T cells can be detected by an interferon γ (IFNγ)-specific ELISPOT assay.
Resumo:
A simple method determining airborne monoethanolamine has been developed. Monoethanolamine determination has traditionally been difficult due to analytical separation problems. Even in recent sophisticated methods, this difficulty remains as the major issue often resulting in time-consuming sample preparations. Impregnated glass fiber filters were used for sampling. Desorption of monoethanolamine was followed by capillary GC analysis and nitrogen phosphorous selective detection. Separation was achieved using a specific column for monoethanolamines (35% diphenyl and 65% dimethyl polysiloxane). The internal standard was quinoline. Derivatization steps were not needed. The calibration range was 0.5-80 μg/mL with a good correlation (R(2) = 0.996). Averaged overall precisions and accuracies were 4.8% and -7.8% for intraday (n = 30), and 10.5% and -5.9% for interday (n = 72). Mean recovery from spiked filters was 92.8% for the intraday variation, and 94.1% for the interday variation. Monoethanolamine on stored spiked filters was stable for at least 4 weeks at 5°C. This newly developed method was used among professional cleaners and air concentrations (n = 4) were 0.42 and 0.17 mg/m(3) for personal and 0.23 and 0.43 mg/m(3) for stationary measurements. The monoethanolamine air concentration method described here was simple, sensitive, and convenient both in terms of sampling and analytical analysis.
Resumo:
An efficient screening strategy for the identification of potentially interesting low-abundance antifungal natural products in crude extracts that combines both a sensitive bioautography assay and high performance liquid chromatography (HPLC) microfractionation was developed. This method relies on high performance thin layer chromatography (HPTLC) bioautography with a hypersusceptible engineered strain of Candida albicans (DSY2621) for bioactivity detection, followed by the evaluation of wild type strains in standard microdilution antifungal assays. Active extracts were microfractionated by HPLC in 96-well plates, and the fractions were subsequently submitted to the bioassay. This procedure enabled precise localisation of the antifungal compounds directly in the HPLC chromatograms of the crude extracts. HPLC-PDA-mass spectrometry (MS) data obtained in parallel to the HPLC antifungal profiles provided a first chemical screening about the bioactive constituents. Transposition of the HPLC analytical conditions to medium-pressure liquid chromatography (MPLC) allowed the efficient isolation of the active constituents in mg amounts for structure confirmation and more extensive characterisation of their biological activities. The antifungal properties of the isolated natural products were evaluated by their minimum inhibitory concentration (MIC) in a dilution assay against both wild type and engineered strains of C. albicans. The biological activity of the most promising agents was further evaluated in vitro by electron microscopy and in vivo in a Galleria mellonella model of C. albicans infection. The overall procedure represents a rational and comprehensive means of evaluating antifungal activity from various perspectives for the selection of initial hits that can be explored in more in-depth mode-of-action studies. This strategy is illustrated by the identification and bioactivity evaluation of a series of antifungal compounds from the methanolic extract of a Rubiaceae plant, Morinda tomentosa, which was used as a model in these studies.
Resumo:
Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair.
Resumo:
BACKGROUND: Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. METHODOLOGY/PRINCIPAL FINDINGS: Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9-92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4-8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. CONCLUSIONS/SIGNIFICANCE: In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.
Resumo:
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Resumo:
OBJECTIVE: Smuggling dissolved drugs, especially cocaine, in bottled liquids is an ongoing problem at borders. Common fluoroscopy of packages at the border cannot detect contaminated liquids. The objective of our study was to develop an MDCT screening method to detect cocaine-containing vessels that are hidden between uncontaminated ones in a shipment. MATERIALS AND METHODS: Studies were performed on three wine bottles containing cocaine solutions that were confiscated at the Swiss border. Reference values were obtained by scans of different sorts of commercially available wine and aqueous solutions of dissolved sugar. All bottles were scanned using MDCT, and data evaluation was performed by measuring the mean peak of Hounsfield units. To verify the method, simulated testing was performed. RESULTS: Using measurements of the mean peak of Hounsfield units enables the detection of dissolved cocaine in wine bottles in a noninvasive and rapid fashion. Increasing opacity corresponds well with the concentration of dissolved cocaine. Simulated testing showed that it is possible to distinguish between cocaine-contaminated and uncontaminated wine bottles. CONCLUSION: The described method is an efficacious screening method to detect cocaine-contaminated bottles that are hidden between untreated bottles in cargo. The noninvasive examination of cargo allows a questionable delivery to be tracked without arousing the suspicion of the smugglers.
Resumo:
BACKGROUND: Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS: This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE: We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.
Resumo:
Computer-Aided Tomography Angiography (CTA) images are the standard for assessing Peripheral artery disease (PAD). This paper presents a Computer Aided Detection (CAD) and Computer Aided Measurement (CAM) system for PAD. The CAD stage detects the arterial network using a 3D region growing method and a fast 3D morphology operation. The CAM stage aims to accurately measure the artery diameters from the detected vessel centerline, compensating for the partial volume effect using Expectation Maximization (EM) and a Markov Random field (MRF). The system has been evaluated on phantom data and also applied to fifteen (15) CTA datasets, where the detection accuracy of stenosis was 88% and the measurement accuracy was with an 8% error.
Resumo:
Access to new biological sources is a key element of natural product research. A particularly large number of biologically active molecules have been found to originate from microorganisms. Very recently, the use of fungal co-culture to activate the silent genes involved in metabolite biosynthesis was found to be a successful method for the induction of new compounds. However, the detection and identification of the induced metabolites in the confrontation zone where fungi interact remain very challenging. To tackle this issue, a high-throughput UHPLC-TOF-MS-based metabolomic approach has been developed for the screening of fungal co-cultures in solid media at the petri dish level. The metabolites that were overexpressed because of fungal interactions were highlighted by comparing the LC-MS data obtained from the co-cultures and their corresponding mono-cultures. This comparison was achieved by subjecting automatically generated peak lists to statistical treatments. This strategy has been applied to more than 600 co-culture experiments that mainly involved fungal strains from the Fusarium genera, although experiments were also completed with a selection of several other filamentous fungi. This strategy was found to provide satisfactory repeatability and was used to detect the biomarkers of fungal induction in a large panel of filamentous fungi. This study demonstrates that co-culture results in consistent induction of potentially new metabolites.
Resumo:
Raman spectroscopy combined with chemometrics has recently become a widespread technique for the analysis of pharmaceutical solid forms. The application presented in this paper is the investigation of counterfeit medicines. This increasingly serious issue involves networks that are an integral part of industrialized organized crime. Efficient analytical tools are consequently required to fight against it. Quick and reliable authentication means are needed to allow the deployment of measures from the company and the authorities. For this purpose a method in two steps has been implemented here. The first step enables the identification of pharmaceutical tablets and capsules and the detection of their counterfeits. A nonlinear classification method, the Support Vector Machines (SVM), is computed together with a correlation with the database and the detection of Active Pharmaceutical Ingredient (API) peaks in the suspect product. If a counterfeit is detected, the second step allows its chemical profiling among former counterfeits in a forensic intelligence perspective. For this second step a classification based on Principal Component Analysis (PCA) and correlation distance measurements is applied to the Raman spectra of the counterfeits.
Resumo:
Stimulants are banned in-competition for all categories of sports by the World Anti-Doping Agency. A simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay employing electrospray ionisation in positive mode was developed in that work for the quantification in urine specimens of 4-methyl-2-hexaneamine, a primary amine exhibiting sympathomimetic properties. Following a simple pretreatment procedure, the analyte was separated using a gradient mobile phase on reverse phase C8 column. Selected reaction monitoring m/z 116.2-->57.3 was specific for detection of 4-methyl-2-hexaneamine and the assay exhibited a linear dynamic range of 50-700 ng/mL. The validated method has been successfully applied to analyze the target compound in food supplements as well as in urine specimens. The administered drug (40 mg) was detected at the level of 350 ng/mL in the urine up to 4 days.
Resumo:
A wide variety of whole cell bioreporter and biosensor assays for arsenic detection has been developed over the past decade. The assays permit flexible detection instrumentation while maintaining excellent method of detection limits in the environmentally relevant range of 10-50 μg arsenite per L and below. New emerging trends focus on genetic rewiring of reporter cells and/or integration into microdevices for more optimal detection. A number of case studies have shown realistic field applicability of bioreporter assays.
Resumo:
Although severe patient-ventilator asynchrony is frequent during invasive and non-invasive mechanical ventilation, diagnosing such asynchronies usually requires the presence at the bedside of an experienced clinician to assess the tracings displayed on the ventilator screen, thus explaining why evaluating patient-ventilator interaction remains a challenge in daily clinical practice. In the previous issue of Critical Care, Sinderby and colleagues present a new automated method to detect, quantify, and display patient-ventilator interaction. In this validation study, the automatic method is as efficient as experts in mechanical ventilation. This promising system could help clinicians extend their knowledge about patient-ventilator interaction and further improve assisted mechanical ventilation.