364 resultados para ENERGY-METABOLISM


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The combined 24-h energy expenditure (24-h EE) of mother and child was measured with a respiratory chamber (indirect calorimeter) in a group of 16 lactating Gambian women and was compared with that of a control group of 16 nonpregnant, nonlactating (NPNL) Gambian women. Breast-milk production (738 +/- 47 g/d: mean +/- SE) was adequate to allow a normal rate of growth of their 2-mo-old babies (28.0 +/- 2.4 g/d). The combined 24-h EE (mother and child) was higher (8381 +/- 180 kJ/d. P less than 0.001) than that of NPNL women (6092 +/- 121 kJ/d). Two-thirds of this differences could be attributed to the child's EE and one-third to a greater spontaneous physical activity of lactating women. The energy retained by the child for growth in conjunction with the calorimetric measurements allowed the calculation of the extra energy requirements for lactation, which were found to be 2100 kJ/d. These results confirm the values of the current dietary recommendations for lactation, based on the energy cost of milk production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Obesity results from the organism's inability to maintain energy balance over a long term. Childhood obesity and its related factors and pathological consequences tend to persist into adulthood. A cluster of factors, including high energy density in the diet (high fat intake), low energy expenditure, and disturbed substrate oxidation, favour the increase in fat mass. Oxidation of three major macronutrients and their roles in the regulation of energy balance, particularly in children and adolescents, are discussed. Total glucose oxidation is not different between obese and lean children; exogenous glucose utilization is higher whereas endogenous glucose utilization is lower in obese compared with lean children. Carbohydrate composition of the diet determines carbohydrate oxidation regardless of fat content of the diet. Both exogenous and endogenous fat oxidation are higher in obese than in lean subjects. The influence of high fat intake on accumulation of fat mass is operative rather over a long term. Several future directions are addressed, such that a combination of increased physical activity and modification in diet composition, in terms of energy density and glycemic index, is recommended for children and adolescents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By use of a respiration chamber, 24-hour energy expenditure (EE), diet-induced thermogenesis (DIT), and basal and sleeping EE were measured in 20 young rural Gambian men during the "hungry" season (weight, 60.8 +/- 1.4 kg) and in a group of 16 European men matched for body composition (weight, 66.9 +/- 1.9 kg). The 24-h EE was lower in Gambian than in European men (2047 +/- 46 vs 2635 +/- 74 kcal/d, p less than 0.001, respectively). Basal EE and sleeping EE were also lower in Gambian than in European men (1.05 +/- 0.02 vs 1.25 +/- 0.02 kcal/min and 1.0 +/- 0.02 vs 1.18 +/- 0.02 kcal/min, p less than 0.01, respectively). DIT was blunted in Gambian compared with European men (6.3 +/- 0.6% vs 12.1 +/- 0.5%, p less than 0.001 respectively). The net efficiency of walking was greater in Gambian than in European men (23.2 +/- 0.3% vs 20.1 +/- 0.4%, p less than 0.001, respectively). A low basal and sleeping EE, a reduced DIT, and a high work efficiency are important energy-sparing mechanisms in Gambian men, which allow them to cope with a marginal level of dietary intake during the hungry season.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Obesity prevalence is generally higher in women than in men, and there is also a sex difference in body fat distribution. Sex differences in obesity can be explained in part by the influence of gonadal steroids on body composition and appetite; however, behavioural, socio-cultural and chromosomal factors may also play a role. This review, which evolved from the 2008 Stock Conference on sex differences in obesity, summarizes current research and recommendations related to hormonal and neuroendocrine influences on energy balance and fat distribution. A number of important gaps in the research are identified, including a need for more studies on chromosomal sex effects on energy balance, the role of socio-cultural (i.e. gender) factors in obesity and the potential deleterious effects of high-fat diets during pregnancy on the foetus. Furthermore, there is a paucity of clinical trials examining sex-specific approaches and outcomes of obesity treatment (lifestyle-based or pharmacological), and research is urgently needed to determine whether current weight loss programmes, largely developed and tested on women, are appropriate for men. Last, it is important that both animal and clinical research on obesity be designed and analysed in such a way that data can be separately examined in both men and women.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hepatic glucose production is autoregulated during infusion of gluconeogenic precursors. In hyperglycemic patients with multiple trauma, hepatic glucose production and gluconeogenesis are increased, suggesting that autoregulation of hepatic glucose production may be defective. To better understand the mechanisms of autoregulation and its possible alterations in metabolic stress, lactate was coinfused with glucose in healthy volunteers and in hyperglycemic patients with multiple trauma or critical illness. In healthy volunteers, infusion of glucose alone nearly abolished endogenous glucose production. Lactate increased gluconeogenesis (as indicated by a decrease in net carbohydrate oxidation with no change in total [13C]carbohydrate oxidation) but did not increase endogenous glucose production. In patients with metabolic stress, endogenous glucose production was not suppressed by exogenous glucose, but lactate did not further increase hepatic glucose production. It is concluded that 1) in healthy humans, autoregulation of hepatic glucose production during infusion of lactate is still present when glycogenolysis is suppressed by exogenous glucose and 2) autoregulation of hepatic glucose production is not abolished in hyperglycemic patients with metabolic stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Obesity is becoming more frequent in children; understanding the extent to which this condition affects not only carbohydrate and lipid metabolism but also protein metabolism is of paramount importance. OBJECTIVE: We evaluated the kinetics of protein metabolism in obese, prepubertal children in the static phase of obesity. DESIGN: In this cross-sectional study, 9 obese children (x +/- SE: 44+/-4 kg, 30.9+/-1.5% body fat) were compared with 8 lean (28+/-2 kg ,16.8+/-1.2% body fat), age-matched (8.5+/-0.2 y) control children. Whole-body nitrogen flux, protein synthesis, and protein breakdown were calculated postprandially over 9 h from 15N abundance in urinary ammonia by using a single oral dose of [15N]glycine; resting energy expenditure (REE) was assessed by indirect calorimetry (canopy) and body composition by multiple skinfold-thickness measurements. RESULTS: Absolute rates of protein synthesis and breakdown were significantly greater in obese children than in control children (x +/- SE: 208+/-24 compared with 137+/-14 g/d, P < 0.05, and 149+/-20 compared with 89+/-13 g/d, P < 0.05, respectively). When these variables were adjusted for fat-free mass by analysis of covariance, however, the differences between groups disappeared. There was a significant relation between protein synthesis and fat-free mass (r = 0.83, P < 0.001) as well as between protein synthesis and REE (r = 0.79, P < 0.005). CONCLUSIONS: Obesity in prepubertal children is associated with an absolute increase in whole-body protein turnover that is consistent with an absolute increase in fat-free mass, both of which contribute to explaining the greater absolute REE in obese children than in control children.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquaglyceroporin-9 (AQP9) facilitates diffusion of water and energy substrates such as glycerol and monocarboxylates. AQP9 is present in plasma membrane and mitochondria of astrocytes and catecholaminergic neurons, suggesting that it plays a role in the energetic status of these cells. Using specific small interference RNA directed against AQP9 in astrocyte cultures, we showed that glycerol uptake is decreased which is associated with an increase in glucose uptake and oxidative metabolism. Our results not only confirm the presence of AQP9 in astrocytes but also suggest that changes in AQP9 expression alter glial energy metabolism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small daily positive energy imbalances of 200 to 800 kJ (about 50 to 200 kcal) due to reduced resting energy expenditure (REE), reduced diet-induced thermogenesis, or physical inactivity are believed to predispose to obesity. However, estimates of the magnitude of the weight gain often fail to account for concurrent changes in body composition and increases in maintenance energy requirements as weight increases and energy equilibrium is re-established. Using previously reported data on body composition and REE in women and the energy cost of tissue deposition, we used mathematical models to predict the theoretical effect of a persistent reduction in energy expenditure on long-term weight gain, assuming no adaptation in energy intake. The analyses indicate the following effects of a reduced level of energy expenditure in lean and obese women: (i) REE rises more slowly with increasing degrees of obesity due to a declining proportion of the more metabolically active fat-free mass; so, for the same positive energy balance, a significantly greater weight gain is expected for obese than for lean women before energy equilibrium is re-established; (ii) due to the greater energy density of adipose tissue, the time course of weight gain to achieve energy balance is longer for obese subjects: in general, this is approximately five years for lean and ten years for obese women; (iii) the magnitude of weight gain of lean women in response to a reduced energy expenditure of 200 to 800 kJ/day is only about 3 to 15 kg, amounts insufficient to explain severe obesity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The recent discovery of lipid-activatable transcription factors that regulate the genes controlling lipid metabolism and adipogenesis has provided insight into the way that organisms sense and respond to lipid levels. Identification of the signaling pathways in which these receptors are involved will help us to understand the control of energy balance and the molecular defects underlying its disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this single-blind, placebo-controlled study was to investigate the effects of the new beta-adrenergic compound Ro 40-2148 on resting energy expenditure (REE) at rest and after an oral glucose load in non-diabetic obese women before and after two weeks of treatment. After one week of placebo administration and after an overnight fast and one hour rest, REE and glucose and lipid oxidation rates were measured by indirect calorimetry (hood system) before and for 6 h after a single dose of placebo solution. A 75 g oral glucose tolerance test (OGTT) was performed during this period starting 90 min after the placebo administration. During the following two weeks, using a randomization design, six patients received Ro 40-2148 at a dose of 400 mg diluted in 100 ml water twice a day (i.e. 800 mg per day), while six others continued with the placebo administration. The same tests and measurements were repeated after two weeks, except for the treatment group which received the drug instead of the placebo. The 14-day period of drug administration did not increase REE measured in post-absorptive conditions. Similarly, there was no acute effect on REE of a 400 mg dose of Ro 40-2148. In contrast, glucose-induced thermogenesis was significantly increased after two weeks in the treatment group (means +/- s.e.m.: 3.7 +/- 1.3%, P = 0.047), while no change was observed in the placebo group (-0.8 +/- 0.7%, not significant). Since there was no significant change in the respiratory quotient, the increase in energy expenditure observed in the treatment group was due to stimulation of both lipid and glucose oxidation. The drug induced no variations in heart rate, blood pressure, axillary temperature or in plasma glucose, insulin and free fatty acid levels. In conclusion, this study shows that Ro 40-2148 activates glucose-induced thermogenesis in obese non-diabetic patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thermogenic response induced by ethanol ingestion in humans has not been extensively studied. This study was designed to determine the thermic effect of ethanol added to a normal diet in healthy nonalcoholic subjects, using indirect calorimetry measurements over a 24-h period in a respiration chamber. The thermic effect of ethanol was also measured when ethanol was ingested in the fasting state, using a ventilated hood system during a 5-h period. Six subjects ingested 95.6 +/- 1.8 (SE) g ethanol in 1 day partitioned over three meals; there was a 5.5 +/- 1.2% increase in 24-h energy expenditure compared with a control day in which all conditions were identical except that no ethanol was consumed. The calculated ethanol-induced thermogenesis (EIT) was 22.5 +/- 4.7% of the ethanol energy ingested. Ingestion of 31.9 +/- 0.6 g ethanol in the fasting state led to a 7.4 +/- 0.6% increase in energy expenditure over baseline values, and the calculated EIT was 17.1 +/- 2.2%. It is concluded that in healthy nonalcoholic adults ethanol elicits a thermogenic response equal to approximately 20% of the ethanol energy. Thus the concept of the apparently inefficient utilization of ethanol energy is supported by these results which show that only approximately 80% of the ethanol energy is used as metabolizable energy for biochemical processes in healthy nonalcoholic moderate ethanol consumers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The magnitude of variability in resting energy expenditure (REE) during the day was assessed in nine healthy young subjects under two nutritional conditions: 1) mixed nutrient (53% carbohydrate, 30% fat, 17% protein) enteral feeding at an energy level corresponding to 1.44 REE; and 2) enteral fasting, with only water allowed. In each subject, six 30-min measurements of REE were performed using indirect calorimetry (hood system) at 90-min intervals from 9 AM to 5 PM. The mean REE and respiratory quotient were significantly (p less than .01) greater during feeding than during fasting (1.08 +/- 0.07 [SEM] vs. 1.00 +/- 0.06 kcal/min and 0.874 +/- 0.007 vs. 0.829 +/- 0.008 kcal/min, respectively). Mean postprandial thermogenesis was 4.9 +/- 0.4% of metabolizable energy administered. The intraindividual variability of REE throughout the day, expressed as the coefficient of variation, ranged from 0.7% to 2.0% in the fasting condition and from 1.2% to 4.1% in the feeding condition. There was no significant difference between the REE measured in the morning and that determined in the afternoon.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The optimal hemoglobin (Hgb) target after aneurysmal subarachnoid hemorrhage is not precisely known. We sought to examine the threshold of Hgb concentration associated with an increased risk of cerebral metabolic dysfunction in patients with poor-grade subarachnoid hemorrhage. METHODS: Twenty consecutive patients with poor-grade subarachnoid hemorrhage who underwent multimodality neuromonitoring (intracranial pressure, brain tissue oxygen tension, cerebral microdialysis) were studied prospectively. Brain tissue oxygen tension and extracellular lactate/pyruvate ratio were used as markers of cerebral metabolic dysfunction and the relationship between Hgb concentrations and the incidence of brain hypoxia (defined by a brain tissue oxygen tension <20 mm Hg) and cell energy dysfunction (defined by a lactate/pyruvate ratio >40) was analyzed. RESULTS: Compared with higher Hgb concentrations, a Hgb concentration <9 g/dL was associated with lower brain tissue oxygen tension (27.2 [interquartile range, 21.2 to 33.1] versus 19.9 [interquartile range, 7.1 to 33.1] mm Hg, P=0.02), higher lactate/pyruvate ratio (29 [interquartile range, 25 to 38] versus 36 [interquartile range, 26 to 59], P=0.16), and an increased incidence of brain hypoxia (21% versus 52%, P<0.01) and cell energy dysfunction (23% versus 43%, P=0.03). On multivariable analysis, a Hgb concentration <9 g/dL was associated with a higher risk of brain hypoxia (OR, 7.92; 95% CI, 2.32 to 27.09; P<0.01) and cell energy dysfunction (OR, 4.24; 95% CI, 1.33 to 13.55; P=0.02) after adjusting for cerebral perfusion pressure, central venous pressure, PaO(2)/FIO(2) ratio, and symptomatic vasospasm. CONCLUSIONS: A Hgb concentration <9 g/dL is associated with an increased incidence of brain hypoxia and cell energy dysfunction in patients with poor-grade subarachnoid hemorrhage.