330 resultados para Diffusion tensor imaging (DTI)
Resumo:
PURPOSE: To illustrate the evolution of brain perfusion-weighted magnetic resonance imaging (PWI-MRI) in severe neonatal hypoxic-ischemic (HI) encephalopathy, and its possible relation to further neurodevelopmental outcome. MATERIALS AND METHODS: Two term neonates with HI encephalopathy underwent an early and a late MRI, including PWI. They were followed until eight months of age. A total of three "normal controls" were also included. Perfusion maps were obtained, and relative cerebral blood flow (rCBF) and cerebral blood volume (rCBV) values were measured. RESULTS: Compared to normal neonates, a hyperperfusion (increased rCBF and rCBV) was present on early scans in the whole brain. On late scans, hyperperfusion persisted in cortical gray matter (normalization of rCBF and rCBV ratios in white matter and basal ganglia, but not in cortical gray matter). Diffusion-weighted imaging (DWI) was normalized, and extensive lesions became visible on T2-weighted images. Both patients displayed very abnormal outcome: Patient 2 with the more abnormal early and late hyperperfusion being the worst. CONCLUSION: PWI in HI encephalopathy did not have the same temporal evolution as DWI, and remained abnormal for more than one week after injury. This could be a marker of an ongoing mechanism underlying severe neonatal HI encephalopathy. Evolution of PWI might help to predict further neurodevelopmental outcome.
Resumo:
In the cerebral cortex, the activity levels of neuronal populations are continuously fluctuating. When neuronal activity, as measured using functional MRI (fMRI), is temporally coherent across 2 populations, those populations are said to be functionally connected. Functional connectivity has previously been shown to correlate with structural (anatomical) connectivity patterns at an aggregate level. In the present study we investigate, with the aid of computational modeling, whether systems-level properties of functional networks-including their spatial statistics and their persistence across time-can be accounted for by properties of the underlying anatomical network. We measured resting state functional connectivity (using fMRI) and structural connectivity (using diffusion spectrum imaging tractography) in the same individuals at high resolution. Structural connectivity then provided the couplings for a model of macroscopic cortical dynamics. In both model and data, we observed (i) that strong functional connections commonly exist between regions with no direct structural connection, rendering the inference of structural connectivity from functional connectivity impractical; (ii) that indirect connections and interregional distance accounted for some of the variance in functional connectivity that was unexplained by direct structural connectivity; and (iii) that resting-state functional connectivity exhibits variability within and across both scanning sessions and model runs. These empirical and modeling results demonstrate that although resting state functional connectivity is variable and is frequently present between regions without direct structural linkage, its strength, persistence, and spatial statistics are nevertheless constrained by the large-scale anatomical structure of the human cerebral cortex.
Resumo:
Recently in this journal, Alkemade and Forstmann again challenged the evidence for a tripartite organisation to the subthalamic nucleus (STN) (Alkemade & Forstmann 2014). Additionally, they raised specific issues with the earlier published results using 3T MRI to perform in vivo diffusion weighted imaging (DWI) based segmentation of the STN (Lambert et al. 2012). Their comments reveal a common misconception related to the underlying methodologies used, which we clarify in this reply, in addition to highlighting how their current conclusions are synonymous with our original paper. The ongoing debate, instigated by the controversies surrounding STN parcellation, raises important implications for the assumptions and methodologies employed in mapping functional brain anatomy, both in vivo and ex vivo, and reveals a fundamental emergent problem with the current techniques. These issues are reviewed, and potential strategies that could be developed to manage them in the future are discussed further.
Resumo:
Contralesional brain connectivity plasticity was previously reported after stroke. This study aims at disentangling the biological mechanisms underlying connectivity plasticity in the uninjured motor network after an ischemic lesion. In particular, we measured generalized fractional anisotropy (GFA) and magnetization transfer ratio (MTR) to assess whether poststroke connectivity remodeling depends on axonal and/or myelin changes. Diffusion-spectrum imaging and magnetization transfer MRI at 3T were performed in 10 patients in acute phase, at 1 and 6 months after stroke, which was affecting motor cortical and/or subcortical areas. Ten age- and gender-matched healthy volunteers were scanned 1 month apart for longitudinal comparison. Clinical assessment was also performed in patients prior to magnetic resonance imaging (MRI). In the contralesional hemisphere, average measures and tract-based quantitative analysis of GFA and MTR were performed to assess axonal integrity and myelination along motor connections as well as their variations in time. Mean and tract-based measures of MTR and GFA showed significant changes in a number of contralesional motor connections, confirming both axonal and myelin plasticity in our cohort of patients. Moreover, density-derived features (peak height, standard deviation, and skewness) of GFA and MTR along the tracts showed additional correlation with clinical scores than mean values. These findings reveal the interplay between contralateral myelin and axonal remodeling after stroke.
Resumo:
Extreme prematurity and pregnancy conditions leading to intrauterine growth restriction (IUGR) affect thousands of newborns every year and increase their risk for poor higher order cognitive and social skills at school age. However, little is known about the brain structural basis of these disabilities. To compare the structural integrity of neural circuits between prematurely born controls and children born extreme preterm (EP) or with IUGR at school age, long-ranging and short-ranging connections were noninvasively mapped across cortical hemispheres by connection matrices derived from diffusion tensor tractography. Brain connectivity was modeled along fiber bundles connecting 83 brain regions by a weighted characterization of structural connectivity (SC). EP and IUGR subjects, when compared with controls, had decreased fractional anisotropy-weighted SC (FAw-SC) of cortico-basal ganglia-thalamo-cortical loop connections while cortico-cortical association connections showed both decreased and increased FAw-SC. FAw-SC strength of these connections was associated with poorer socio-cognitive performance in both EP and IUGR children.
Resumo:
Introduction: Gamma Knife surgery (GKS) is a noninvasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventrointermediate nucleus of the thalamus (e.g., Vim) for tremor. Objective: To enhance anatomic imaging for Vim GKS using high-field (7 T) MRI and Diffusion Weighted Imaging (DWI). Methods: Five young healthy subjects and two patients were scanned both on 3 and 7 T MRI. The protocol was the same in all cases, and included: T1-weighted (T1w) and DWI at 3T; susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated into the Gamma Plan Software® (LGP, Elekta Instruments, AB, Sweden) and co-registered with 3T images. A simulation of targeting of the Vim was done using the quadrilatere of Guyot. Furthermore, a correlation with the position of the found target on SWI and also on DWI (after clustering of the different thalamic nuclei) was performed. Results: For the 5 healthy subjects, there was a good correlation between the position of the Vim on SWI, DWI and the GKS targeting. For the patients, on the pretherapeutic acquisitions, SWI helped in positioning the target. For posttherapeutic sequences, SWI supposed position of the Vim matched the corresponding contrast enhancement seen at follow-up MRI. Additionally, on the patient's follow-up T1w images, we could observe a small area of contrast-enhancement corresponding to the target used in GKS (e.g., Vim), which belongs to the Ventral-Lateral-Ventral (VLV) nuclei group. Our clustering method resulted in seven thalamic groups. Conclusion: The use of SWI provided us with a superior resolution and an improved image contrast within the central gray matter, enabling us to directly visualize the Vim. We additionally propose a novel robust method for segmenting the thalamus in seven anatomical groups based on DWI. The localization of the GKS target on the follow-up T1w images, as well as the position of the Vim on 7 T, have been used as a gold standard for the validation of VLV cluster's emplacement. The contrast enhancement corresponding to the targeted area was always localized inside the expected cluster, providing strong evidence of the VLV segmentation accuracy. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g., quadrilatere of Guyot, histological atlases, DWI) seems to show a very good anatomical matching.
Resumo:
Purpose: To evaluate the feasibility, determine the optimal b-value, and assess the utility of 3-T diffusion-weighted MR imaging (DWI) of the spine in differentiating benign from pathologic vertebral compression fractures.Methods and Materials: Twenty patients with 38 vertebral compression fractures (24 benign, 14 pathologic) and 20 controls (total: 23 men, 17 women, mean age 56.2years) were included from December 2010 to May 2011 in this IRB-approved prospective study. MR imaging of the spine was performed on a 3-T unit with T1-w, fat-suppressed T2-w, gadolinium-enhanced fat-suppressed T1-w and zoomed-EPI (2D RF excitation pulse combined with reduced field-of-view single-shot echo-planar readout) diffusion-w (b-values: 0, 300, 500 and 700s/mm2) sequences. Two radiologists independently assessed zoomed-EPI image quality in random order using a 4-point scale: 1=excellent to 4=poor. They subsequently measured apparent diffusion coefficients (ADCs) in normal vertebral bodies and compression fractures, in consensus.Results: Lower b-values correlated with better image quality scores, with significant differences between b=300 (mean±SD=2.6±0.8), b=500 (3.0±0.7) and b=700 (3.6±0.6) (all p<0.001). Mean ADCs of normal vertebral bodies (n=162) were 0.23, 0.17 and 0.11×10-3mm2/s with b=300, 500 and 700s/mm2, respectively. In contrast, mean ADCs were 0.89, 0.70 and 0.59×10-3mm2/s for benign vertebral compression fractures and 0.79, 0.66 and 0.51×10-3mm2/s for pathologic fractures with b=300, 500 and 700s/mm2, respectively. No significant difference was found between ADCs of benign and pathologic fractures.Conclusion: 3-T DWI of the spine is feasible and lower b-values (300s/mm2) are recommended. However, our preliminary results show no advantage of DWI in differentiating benign from pathologic vertebral compression fractures.
Resumo:
BACKGROUND: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly being used for assessing the treatment succes in oncology, but the real clinical value needs to evaluated by comparison with other, already established, metabolic imaging techniques. PURPOSE: To prospectively evaluate the clinical potential of diffusion-weighted MRI with apparent diffusion coefficient (ADC) mapping for gastrointestinal stromal tumor (GIST) response to targeted therapy compared with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). MATERIAL AND METHODS: Eight patients (mean age, 56 ± 11 years) known to have metastatic GIST underwent 18F-FDG PET/CT and MRI (T1Gd, DWI [b = 50,300,600], ADC mapping) simultaneously, before and after change in targeted therapy. MR and PET/CT examinations were first analyzed blindly. Second, PET/CT images were co-registered with T1Gd-MR images for lesion detection. Only 18F-FDG avid lesions were considered. Maximum standardized uptake value (SUVmax) and the corresponding minimum ADCmin were measured for the six largest lesions per patient, if any, on baseline and follow-up examinations. The relationship between changes in SUVmax and ADCmin was analyzed (Spearman's correlation). RESULTS: Twenty-four metastases (12 hepatic, 12 extra-hepatic) were compared on PET/CT and MR images. SUVmax decreased from 7.7 ± 8.1 g/mL to 5.5 ± 5.4 g/mL (P = 0.20), while ADCmin increased from 1.2 ± 0.3 × 10(-3)mm(2)/s to 1.5 ± 0.3 × 10(-3)mm(2)/s (P = 0.0002). There was a significant association between changes in SUVmax and ADCmin (rho = - 0.62, P = 0.0014), but not between changes in lesions size (P = 0.40). CONCLUSION: Changes in ADCmin correlated with the response of 18F-FDG avid GIST to targeted therapy. Thus, diffusion-weighted MRI may represent a radiation-free alternative for follow-up treatment for metastatic GIST patients.
Resumo:
Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed.
Resumo:
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.