99 resultados para Deuterium Oxide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. Methods: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). Results: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. Conclusions: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial cell release of nitric oxide (NO) is a defining characteristic of nondiseased arteries, and abnormal endothelial NO release is both a marker of early atherosclerosis and a predictor of its progression and future events. Healthy coronaries respond to endothelial-dependent stressors with vasodilatation and increased coronary blood flow (CBF), but those with endothelial dysfunction respond with paradoxical vasoconstriction and reduced CBF. Recently, coronary MRI and isometric handgrip exercise (IHE) were reported to noninvasively quantify coronary endothelial function (CEF). However, it is not known whether the coronary response to IHE is actually mediated by NO and/or whether it is reproducible over weeks. To determine the contribution of NO, we studied the coronary response to IHE before and during infusion of N(G)-monomethyl-l-arginine (l-NMMA, 0.3 mg·kg(-1)·min(-1)), a NO-synthase inhibitor, in healthy volunteers. For reproducibility, we performed two MRI-IHE studies ∼8 wk apart in healthy subjects and patients with coronary artery disease (CAD). Changes from rest to IHE in coronary cross-sectional area (%CSA) and diastolic CBF (%CBF) were quantified. l-NMMA completely blocked normal coronary vasodilation during IHE [%CSA, 12.9 ± 2.5 (mean ± SE, placebo) vs. -0.3 ± 1.6% (l-NMMA); P < 0.001] and significantly blunted the increase in flow [%CBF, 47.7 ± 6.4 (placebo) vs. 10.6 ± 4.6% (l-NMMA); P < 0.001]. MRI-IHE measures obtained weeks apart strongly correlated for CSA (P < 0.0001) and CBF (P < 0.01). In conclusion, the normal human coronary vasoactive response to IHE is primarily mediated by NO. This noninvasive, reproducible MRI-IHE exam of NO-mediated CEF promises to be useful for studying CAD pathogenesis in low-risk populations and for evaluating translational strategies designed to alter CAD in patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inducible nitric oxide synthase (iNOS) production of nitric oxide (NO) has been mostly associated with so-called nitrosative stress or interaction with superoxide anion. However, recent investigations have indicated that, as for the other isoenzymes producing NO, guanylyl cyclase (GC) is a very sensitive target of iNOS activity. To further investigate this less explored signaling, the NO-cyclic guanosine 3'-5'-monophosphate (NO-cGMP)-induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation on serine 239 was investigated in human embryonic kidney 293 cells (HEK cells). First, the expression and activity of alpha2 and beta1 NO-sensitive GC subunits was determined by Western blot analysis, reverse transcription-polymerase chain reaction and NO donors administration. Then, the expression of a functional cGMP-dependent protein kinase I (PKGI) was verified by addition of 8-Br-cGMP followed by determination of phosphorylation of VASP on serine 239. Finally, iNOS activation of this signaling pathway was characterized after transfection of HEK cells with human iNOS cDNA. Altogether our data show that iNOS-derived NO activates endogenous NO-sensitive GC and leads to VASP phosphorylation in HEK cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inducible nitric oxide synthase (iNOS) functions as a homodimer. In cell extracts, iNOS molecules partition both in cytosolic and particulate fractions, indicating that iNOS exists as soluble and membrane associated forms. In this study, iNOS features were investigated in human intestinal epithelial cells stimulated with cytokines and in duodenum from mice exposed to flagellin. Our experiments indicate that iNOS is mainly associated with the particulate fraction of cell extracts. Confocal microscopy showed a preferential localization of iNOS at the apical pole of intestinal epithelial cells. In particulate fractions, iNOS dimers were more abundant than in the cytosolic fraction. Similar observations were seen in mouse duodenum samples. These results suggest that, in epithelial cells, iNOS activity is regulated by localization-dependent processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found previously that the nitric oxide donor DEA/NO enhanced lipid peroxidation, DNA fragmentation, and cytotoxicity in human bronchial epithelial cells (BEAS-2B) when they were cultured in LHC-8 medium containing the superoxide-generating system hypoxanthine/xanthine oxidase (HX/XO). We have now discovered that DEA/NO's prooxidant action can be reversed by raising the L-tyrosine concentration from 30 to 400 microM. DEA/NO also protected the cells when they were cultured in Dulbecco's Modified Eagle's Medium (DMEM), whose standard concentration of L-tyrosine is 400 microM. Similar trends were seen with the colon adenoma cell line CaCo-2. Since HPLC analysis of cell-free DMEM or LHC-8 containing 400 microM L-tyrosine, DEA/NO, and HX/XO revealed no evidence of L-tyrosine nitration, our data suggest the existence of an as-yet uncharacterized mechanism by which L-tyrosine can influence the biochemical and toxicological effects of reactive nitrogen species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO) is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS) for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2(+)-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue), might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the influence of glutathione (GSH) on cellular effects of nitric oxide (NO) formation, human colon adenocarcinoma cells were transfected with a vector allowing controlled expression of inducible nitric oxide synthase (iNOS). Protein levels of oxidative stress-sensitive heme oxygenase-1 (HO-1) were analyzed in the presence or absence of GSH depletion using L-buthionine-[S,R]-sulfoximine and iNOS induction. While no effect was observed in the presence of iNOS activity alone, a synergistic effect on HO-1 expression was observed in the presence of iNOS expression and GSH depletion. This effect was prevented by addition of N-methyl-L-arginine. Therefore, targeting of endogenous NO may be modulated by intracellular GSH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) produced by inducible NO synthase (iNOS, NOS-2) is an important component of the macrophage-mediated immune defense toward numerous pathogens. Murine macrophages produce NO after cytokine activation, whereas, under similar conditions, human macrophages produce low levels or no NO at all. Although human macrophages can express iNOS mRNA and protein on activation, whether they possess the complete machinery necessary for NO synthesis remains controversial. To define the conditions necessary for human monocytes/macrophages to synthesize NO when expressing a functional iNOS, the human monocytic U937 cell line was engineered to synthesize this enzyme, following infection with a retroviral expression vector containing human hepatic iNOS (DFGiNOS). Northern blot and Western blot analysis confirmed the expression of iNOS in transfected U937 cells both at the RNA and protein levels. NOS enzymatic activity was demonstrated in cell lysates by the conversion of L-[3H]arginine into L-[3H]citrulline and the production of NO by intact cells was measured by nitrite and nitrate accumulation in culture supernatants. When expressing functional iNOS, U937 cells were capable of releasing high levels of NO. NO production was strictly dependent on supplementation of the culture medium with tetrahydrobiopterin (BH4) and was not modified by stimulation of the cells with different cytokines. These observations suggest that (1) human monocytic U937 cells contain all the cofactors necessary for NO synthesis, except BH4 and (2) the failure to detect NO in cytokine-stimulated untransfected U937 cells is not due to the presence of a NO-scavenging molecule within these cells nor to the destabilization of iNOS protein. DFGiNOS U937 cells represent a valuable human model to study the role of NO in immunity toward tumors and pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pig and humans, whose kidneys have a multi-calyceal collecting system, the initiation of ureteral peristalsis takes place in the renal calyces. In the pig and human ureter, recent evidence suggests that nitric oxide (NO) is an inhibitory mediator that may be involved in the regulation of peristalsis. This study was designed to assess whether the NO synthase/NO/cyclic GMP pathway modulates the motility of pig isolated calyceal smooth muscle. Immunohistochemistry revealed a moderate overall innervation of the smooth muscle layer, and no neuronal or inducible NO synthase (NOS) immunoreactivities. Endothelial NOS immunoreactivities were observed in the urothelium and vascular endothelium, and numerous cyclic GMP-immunoreactive (-IR) calyceal smooth muscle cells were found. As measured by monitoring the conversion of L-arginine to L-citrulline, Ca(2+)-dependent NOS activity was moderate. Assessment of functional effects was performed in tissue baths and showed that NO and SIN-1 decreased spontaneous and induced contractions of isolated preparations in a concentration-dependent manner. In strips exposed to NO, there was a 10-fold increase of the cyclic GMP levels compared with control preparations (P < 0.01). It is concluded that a non-neuronal NOS/NO/cyclic GMP pathway is present in pig calyces, where it may influence motility. The demonstration of cyclic GMP-IR smooth muscle cells suggests that NO acts directly on these cells. This NOS/NO/cyclic GMP pathway may be a target for drugs inhibiting peristalsis of mammalian upper urinary tract. Neurourol. Urodynam. 18:673-685, 1999.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposing the human bronchial epithelial cell line BEAS-2B to the nitric oxide (NO) donor sodium 1-(N,N-diethylamino)diazen-1-ium-1, 2-diolate (DEA/NO) at an initial concentration of 0.6 mM while generating superoxide ion at the rate of 1 microM/min with the hypoxanthine/xanthine oxidase (HX/XO) system induced C:G-->T:A transition mutations in codon 248 of the p53 gene. This pattern of mutagenicity was not seen by 'fish-restriction fragment length polymorphism/polymerase chain reaction' (fish-RFLP/PCR) on exposure to DEA/NO alone, however, exposure to HX/XO led to various mutations, suggesting that co-generation of NO and superoxide was responsible for inducing the observed point mutation. DEA/NO potentiated the ability of HX/XO to induce lipid peroxidation as well as DNA single- and double-strand breaks under these conditions, while 0.6 mM DEA/NO in the absence of HX/XO had no significant effect on these parameters. The results show that a point mutation seen at high frequency in certain common human tumors can be induced by simultaneous exposure to reactive oxygen species and a NO source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increased expression of nitric oxide synthase (NOS) has been observed in human colon carcinoma cell lines as well as in human gynecological, breast, and central nervous system tumors. This observation suggests a pathobiological role of tumor-associated NO production. Hence, we investigated NOS expression in human colon cancer in respect to tumor staging, NOS-expressing cell type(s), nitrotyrosine formation, inflammation, and vascular endothelial growth factor expression. Ca2+-dependent NOS activity was found in normal colon and in tumors but was significantly decreased in adenomas (P < 0.001) and carcinomas (Dukes' stages A-D: P < 0.002). Ca2+-independent NOS activity, indicating inducible NOS (NOS2), is markedly expressed in approximately 60% of human colon adenomas (P < 0.001 versus normal tissues) and in 20-25% of colon carcinomas (P < 0.01 versus normal tissues). Only low levels were found in the surrounding normal tissue. NOS2 activity decreased with increasing tumor stage (Dukes' A-D) and was lowest in colon metastases to liver and lung. NOS2 was detected in tissue mononuclear cells (TMCs), endothelium, and tumor epithelium. There was a statistically significant correlation between NOS2 enzymatic activity and the level of NOS2 protein detected by immunohistochemistry (P < 0.01). Western blot analysis of tumor extracts with Ca2+-independent NOS activity showed up to three distinct NOS2 protein bands at Mr 125,000-Mr 138,000. The same protein bands were heavily tyrosine-phosphorylated in some tumor tissues. TMCs, but not the tumor epithelium, were immunopositive using a polyclonal anti-nitrotyrosine antibody. However, only a subset of the NOS2-expressing TMCs stained positively for 3-nitrotyrosine, which is a marker for peroxynitrite formation. Furthermore, vascular endothelial growth factor expression was detected in adenomas expressing NOS2. These data are consistent with the hypothesis that excessive NO production by NOS2 may contribute to the pathogenesis of colon cancer progression at the transition of colon adenoma to carcinoma in situ.