86 resultados para Detector simulation
Resumo:
OBJECTIVES: Repair of the right ventricular outflow tract (RVOT) in paediatric cardiac surgery remains challenging due to the high reoperation rate. Intimal hyperplasia and consequent arteriosclerosis is one of the most important limitation factors for graft durability. Since local shear stress and pressure are predictive elements for intimal hyperplasia and wall degeneration, we sought to determine in an oversized 12-mm RVOT model, with computed fluid dynamics simulation, the local haemodynamical factors that may explain intimal hyperplasia. This was done with the aim of identifying the optimal degree of oversizing for a 12-mm native RVOT. METHODS: Twenty domestic pigs, with a weight of 24.6 ± 0.89 kg and a native RVOT diameter of 12 ± 1.7 mm, had valve conduits of 12, 16, 18 and 20 mm implanted. Pressure and flow were measured at 75, 100 and 125% of normal flow at RVOT at the pulmonary artery, pulmonary artery bifurcation and at the left and right pulmonary arteries. Three-dimensional computed fluid dynamics (CFD) simulation in all four geometries in all flow modalities was performed. Local shear stress and pressure conditions were investigated. RESULTS: Corresponding to 75, 100 and 125% of steady-state flow, three inlet velocity profiles were obtained, 0.2, 0.29 and 0.36 m/s, respectively. At inflow velocity profiles, low shear stress areas, ranged from 0 to 2 Pa, combined with high-pressure areas ranging from 11.5 to 12.1 mmHg that were found at distal anastomosis, at bifurcation and at the ostia of the left and right pulmonary arteries in all geometries. CONCLUSIONS: In all three oversized geometries, the local reparation of shear stress and pressure in the 16-mm model showed a similar local profile as in the native 12 mm RVOT. According to these findings, we suggest oversizing the natural 12-mm RVOT by not more than 4 mm. The elements responsible for wall degeneration and intimal hyperplasia remain very similar to the conditions present in native RVOT.
Resumo:
OBJECTIVES: To determine inter-session and intra/inter-individual variations of the attenuations of aortic blood/myocardium with MDCT in the context of calcium scoring. To evaluate whether these variations are dependent on patients' characteristics. METHODS: Fifty-four volunteers were evaluated with calcium scoring non-enhanced CT. We measured attenuations (inter-individual variation) and standard deviations (SD, intra-individual variation) of the blood in the ascending aorta and of the myocardium of left ventricle. Every volunteer was examined twice to study the inter-session variation. The fat pad thickness at the sternum and noise (SD of air) were measured too. These values were correlated with the measured aortic/ventricular attenuations and their SDs (Pearson). Historically fixed thresholds (90 and 130 HU) were tested against different models based on attenuations of blood/ventricle. RESULTS: The mean attenuation was 46 HU (range, 17-84 HU) with mean SD 23 HU for the blood, and 39 HU (10-82 HU) with mean SD 18 HU for the myocardium. The attenuation/SD of the blood were significantly higher than those of the myocardium (p < 0.01). The inter-session variation was not significant. There was a poor correlation between SD of aortic blood/ventricle with fat thickness/noise. Based on existing models, 90 HU threshold offers a confidence interval of approximately 95% and 130 HU more than 99%. CONCLUSIONS: Historical thresholds offer high confidence intervals for exclusion of aortic blood/myocardium and by the way for detecting calcifications. Nevertheless, considering the large variations of blood/myocardium CT values and the influence of patient's characteristics, a better approach might be an adaptive threshold.
Resumo:
The fact that individuals learn can change the relationship between genotype and phenotype in the population, and thus affect the evolutionary response to selection. Here we ask how male ability to learn from female response affects the evolution of a novel male behavioral courtship trait under pre-existing female preference (sensory drive). We assume a courtship trait which has both a genetic and a learned component, and a two-level female response to males. With individual-based simulations we show that, under this scenario, learning generally increases the strength of selection on the genetic component of the courtship trait, at least when the population genetic mean is still low. As a consequence, learning not only accelerates the evolution of the courtship trait, but also enables it when the trait is costly, which in the absence of learning results in an adaptive valley. Furthermore, learning can enable the evolution of the novel trait in the face of gene flow mediated by immigration of males that show superior attractiveness to females based on another, non-heritable trait. However, rather than increasing monotonically with the speed of learning, the effect of learning on evolution is maximized at intermediate learning rates. This model shows that, at least under some scenarios, the ability to learn can drive the evolution of mating behaviors through a process equivalent to Waddington's genetic assimilation.
Resumo:
In radionuclide metrology, Monte Carlo (MC) simulation is widely used to compute parameters associated with primary measurements or calibration factors. Although MC methods are used to estimate uncertainties, the uncertainty associated with radiation transport in MC calculations is usually difficult to estimate. Counting statistics is the most obvious component of MC uncertainty and has to be checked carefully, particularly when variance reduction is used. However, in most cases fluctuations associated with counting statistics can be reduced using sufficient computing power. Cross-section data have intrinsic uncertainties that induce correlations when apparently independent codes are compared. Their effect on the uncertainty of the estimated parameter is difficult to determine and varies widely from case to case. Finally, the most significant uncertainty component for radionuclide applications is usually that associated with the detector geometry. Recent 2D and 3D x-ray imaging tools may be utilized, but comparison with experimental data as well as adjustments of parameters are usually inevitable.
Resumo:
Connectivity analysis on diffusion MRI data of the whole- brain suffers from distortions caused by the standard echo- planar imaging acquisition strategies. These images show characteristic geometrical deformations and signal destruction that are an important drawback limiting the success of tractography algorithms. Several retrospective correction techniques are readily available. In this work, we use a digital phantom designed for the evaluation of connectivity pipelines. We subject the phantom to a âeurooetheoretically correctâeuro and plausible deformation that resembles the artifact under investigation. We correct data back, with three standard methodologies (namely fieldmap-based, reversed encoding-based, and registration- based). Finally, we rank the methods based on their geometrical accuracy, the dropout compensation, and their impact on the resulting connectivity matrices.
Resumo:
Background Virtual reality (VR) simulation is increasingly used in surgical disciplines. Since VR simulators measure multiple outcomes, standardized reporting is needed. Methods We present an algorithm for combining multiple VR outcomes into dimension summary measures, which are then integrated into a meaningful total score. We reanalyzed the data of two VR studies applying the algorithm. Results The proposed algorithm was successfully applied to both VR studies. Conclusions The algorithm contributes to standardized and transparent reporting in VR-related research.