113 resultados para Demência de Alzheimer - Exercícios físicos
Resumo:
Recently it was reported that, at autopsy, in neuropathologically confirmed cases of Alzheimer's disease spirochaetes were found in blood and cerebrospinal fluid using dark-field microscopy. Moreover, the spirochaetes were isolated and cultured from brain tissue. We now show, using scanning electron microscopy and atomic force microscopy that the helically shaped microorganisms isolated and cultured from the Alzheimer brains possess axial filaments. This indicates that these microorganisms taxonomically indeed belong to the order Spirochaetales. A morphometric analysis reinforces this notion.
Resumo:
Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive biomarker of Alzheimer's disease (AD); however, there is less certainty about its dependency on the staging of AD. We use classical group analyses and automated machine learning classification of standard structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical dementia. Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative were stratified into 4 groups according to the clinical status-(1) AD patients; (2) mild cognitive impairment (MCI) converters; (3) MCI nonconverters; and (4) healthy controls-and submitted to a support vector machine. The obtained classifier was significantly above the chance level (62%) for detecting AD already 4 years before conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a subgroup of control subjects with brain structure and cognitive changes highly similar to those observed in AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested by current models. The demonstrated differential spatial pattern of atrophy between correctly and incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process underlying clinically identified AD.
Resumo:
BACKGROUND: In Alzheimer's disease (AD) the olfactory system, including the olfactory bulb, a limbic paleocortex is severely damaged. The occurrence of early olfactory deficits and the presence of senile plaques and neurofibrillary tangles in olfactory bulb were reported previously by a few authors. The goal of the present study was to analyze the occurrence of AD-type degenerative changes in the peripheral part of the olfactory system and to answer the question whether the frequency and severity of changes in the olfactory bulb and tract are associated with those of the cerebral cortex in AD. MATERIAL AND METHODS: In 110 autopsy cases several cortical areas and the olfactory bulb and tract were analyzed using histo- and immunohistochemical techniques. Based on a semiquantitative analysis of cortical senile plaques, neurofibrillary tangles and curly fibers, the 110 cases were divided into four groups: 19 cases with severe (definite AD), 14 cases with moderate, 58 cases with discrete and 19 control cases without AD-type cortical changes. RESULTS: The number of cases with olfactory involvement was very high, more than 84% in the three groups with cortical AD-type lesions. Degenerative olfactory changes were present in all 19 definite AD cases, and in two of the 19 controls. The statistical analysis showed a significant association between the peripheral olfactory and cortical degenerative changes with respect to their frequency and severity (P < 0.001). Neurofibrillary tangles and neuropil threads appear in the olfactory system as early as in entorhinal cortex. CONCLUSION: The results indicate a close relationship between the olfactory and cortical degenerative changes and indicate that the involvement of the olfactory bulb and tract is one of the earliest events in the degenerative process of the central nervous system in AD.
Resumo:
La maladie d'Alzheimer (MA), forme de démence la plus fréquente, est caractérisée précocement par des troubles de la mémoire, puis par une détérioration cognitive progressive, corrélée avec la progression des lésions cérébrales que sont les dépôts de protéine ß-amyloïde, notamment dans les plaques séniles, et la dégénérescence neurofibrillaire qui touche en priorité les grands neurones pyramidaux de l'hippocampe et du cortex cérébral. La perte ou les dommages synaptiques sont aussi prépondérants et conduisent à la mort neuronale et à la perte de réseaux fonctionnels notamment au niveau des protéines présynaptiques comme la synaptophysine et postsynaptiques comme PSD-95 (Leuba et al. 2008), ainsi que des récepteurs NMDA (NMDAR) liés à PSD-95 et jouant un rôle prédominant dans le fonctionnement synaptique. Notre étude s'est portée une des régions du cortex frontal correspondant à l'aire de Brodmann 10, encore peu étudiée dans la littérature scientifique, qui peut être touchée de manière plus ou moins importante dans la MA, entraînant des troubles de l'humeur et du comportement ainsi que des répercussions sur les fonctions exécutives. L'étude a pour but d'identifier et de quantifier les dépôts de protéine ß-amyloïde et les lésions neurofibrillaires ainsi que les changements de protéines synaptiques et de récepteurs NMDA dans cette région entre une population contrôle et AD, et de la comparer avec d'autres régions déjà partiellement étudiées dans le laboratoire, notamment l'aire 9 qui lui est adjacente et les aires cingulaires 24 et 25. L'analyse est faite de manière qualitative et semi-quantitative au microscope optique sur des coupes colorées avec des méthodes immunohistochimiques. De possibles corrélations anatomo-cliniques sont recherchées dans les cas AD. La région FC10 est touchée par la MA avec une présence de plaques séniles et de dégénérescences neurofibrillaires plus marquées chez les cas atteints de la MA ce qui n'est pas le cas des protéines synaptiques. Le comportement des deux marqueurs pathologiques dans FC10 est comparable aux autres régions cérébrales étudiées notamment à la région adjacente, FC9, contrairement aux marqueurs synaptiques qui selon la région ont un comportement plus variable. L'effet de l'âge dans l'évolution de la physiopathologie de la MA pour les marqueurs pathologiques a été mis en évidence dans la région FC10. Les régions EC et FC9 n'ont pas montré de microhémorragie synonyme d'une possible contribution vasculaire. L'étude de cette région a permis de mettre en évidence l'implication de FC10 dans la MA. Elle montre des points communs avec les autres régions cérébrales notamment vis-à-vis des plaques séniles et des DNF.
Resumo:
In order to understand how plasticity is related to neurodegeneration, we studied synaptic proteins with quantitative immunohistochemistry in the entorhinal cortex from Alzheimer patients and age-matched controls. We observed a significant decrease in presynaptic synaptophysin and an increase in postsynaptic density protein PSD-95, positively correlated with beta amyloid and phosphorylated Tau proteins in Alzheimer cases. Furthermore, Alzheimer-like neuritic retraction was generated in okadaic acid (OA) treated SH-SY5Y neuroblastoma cells with no decrease in PSD-95 expression. However, in a SH-SY5Y clone with decreased expression of transcription regulator LMO4 (as observed in Alzheimer's disease) and increased neuritic length, PSD-95 expression was enhanced but did not change with OA treatment. Therefore, increased PSD-95 immunoreactivity in the entorhinal cortex might result from compensatory mechanisms, as in the SH-SY5Y clone, whereas increased Alzheimer-like Tau phosphorylation is not related to PSD-95 expression, as suggested by the OA-treated cell models.
Resumo:
We investigated how synaptic plasticity is related to the neurodegeneration process in the human dorsolateral prefrontal cortex. Pre- and postsynaptic proteins of Brodmann's area 9 from patients with Alzheimer's disease (AD) and age-matched controls were quantified by immunohistochemical methods and Western blots. The main finding was a significant increase in the expression of postsynaptic density protein PSD-95 in AD brains, revealed on both sections and immunoblots, while the expression of spinophilin, associated to spines, remained quantitatively unchanged despite qualitative changes with age and disease. Presynaptic protein alpha-synuclein indicated an increased immunohistochemical level, while synaptophysin remained unchanged. MAP2, a somatodendritic microtubule protein, as well as AD markers such as amyloid-beta protein and phosphorylated protein tau showed an increased expression on immunosections in AD. Altogether these changes suggest neuritic and synaptic reorganization in the process of AD. In particular, the significant increase in PSD-95 expression suggests a change in NMDA receptors trafficking and may represent a novel marker of functional significance for the disease.
Resumo:
Visual areas 17 and 18 were studied with morphometric methods for numbers of neurons, glia, senile plaques (SP), and neurofibrillary tangles (NFT) in 13 cases of Alzheimer's disease (AD) as compared to 11 controls. In AD cases, the mean neuronal density was significantly decreased by about 30% in both areas 17 and 18, while the glial density was increased significantly only in area 17. The volume of area 17 was unchanged in AD cases but its total number of neurons was decreased by 33% and its total number of glia increased by 45% compared to controls. In AD the number of SP was similar in areas 17 and 18, while that of NFT was significantly higher in area 18. The number of neurons with NFT was only 2% in area 17 and about 10% in area 18. The discrepancy between the loss of neurons and the amount of NFT suggests that neuronal loss can occur without passing through NFT degeneration. The deposition of SP was correlated with glial proliferation, but not with neuronal loss or neurofibrillary degeneration.
Resumo:
In this report, we confirm our previous findings of increased concentrations of soluble amyloid-β protein precursor (sAβPP) in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large cohort of patients (n = 314), not overlapping with those of our previous study, and we extend our observations by including a control group of participants with normal cognition. In addition, we investigate the effects of age, the APOEε4 genotype, and the blood-CSF barrier function on the concentrations of sAβPPα and sAβPPβ. The study participants were categorized according to clinical-neuropsychological criteria, supported by CSF neurochemical dementia diagnostics (NDD) analyses. sAβPPα concentrations in the AD group (132.0 ± 44.8) were significantly higher than in the control group (105.3 ± 37.3, p < 0.0005) but did not differ from the MCI-AD group (138.5 ± 39.5, p = 0.91). The MCI-AD group differed significantly from the MCI-O (97.3 ± 34.3, p < 0.05) group. There was no difference between the control and the MCI-O groups (p = 0.94). Similarly, sAβPPβ concentrations in the AD group (160.2 ± 54.3) were significantly higher than in the control group (129.9 ± 44.6, p < 0.005) but did not differ from the MCI-AD group (184.0 ± 56.4, p = 0.20). The MCI-AD group differed significantly from the MCI-O (127.8 ± 46.2, p < 0.05) group. There was no difference between the control and the MCI-O groups (p > 0.99). We observed highly significant correlation of the two sAβPP forms. Age and the CSF-serum albumin ratio were significant albeit weak predictors of the sAβPPα and sAβPPβ concentrations, while carrying the APOEε4 allele did not influenced the levels of the sAβPP forms. Taken together, the results strongly suggest that CSF sAβPP concentrations may be considered as an extension of already available NDD tools.
Resumo:
The neuropathology of Alzheimer disease is characterized by senile plaques, neurofibrillary tangles and cell death. These hallmarks develop according to the differential vulnerability of brain networks, senile plaques accumulating preferentially in the associative cortical areas and neurofibrillary tangles in the entorhinal cortex and the hippocampus. We suggest that the main aetiological hypotheses such as the beta-amyloid cascade hypothesis or its variant, the synaptic beta-amyloid hypothesis, will have to consider neural networks not just as targets of degenerative processes but also as contributors of the disease's progression and of its phenotype. Three domains of research are highlighted in this review. First, the cerebral reserve and the redundancy of the network's elements are related to brain vulnerability. Indeed, an enriched environment appears to increase the cerebral reserve as well as the threshold of disease's onset. Second, disease's progression and memory performance cannot be explained by synaptic or neuronal loss only, but also by the presence of compensatory mechanisms, such as synaptic scaling, at the microcircuit level. Third, some phenotypes of Alzheimer disease, such as hallucinations, appear to be related to progressive dysfunction of neural networks as a result, for instance, of a decreased signal to noise ratio, involving a diminished activity of the cholinergic system. Overall, converging results from studies of biological as well as artificial neural networks lead to the conclusion that changes in neural networks contribute strongly to Alzheimer disease's progression.
Resumo:
The failure of current strategies to provide an explanation for controversial findings on the pattern of pathophysiological changes in Alzheimer's Disease (AD) motivates the necessity to develop new integrative approaches based on multi-modal neuroimaging data that captures various aspects of disease pathology. Previous studies using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (sMRI) report controversial results about time-line, spatial extent and magnitude of glucose hypometabolism and atrophy in AD that depend on clinical and demographic characteristics of the studied populations. Here, we provide and validate at a group level a generative anatomical model of glucose hypo-metabolism and atrophy progression in AD based on FDG-PET and sMRI data of 80 patients and 79 healthy controls to describe expected age and symptom severity related changes in AD relative to a baseline provided by healthy aging. We demonstrate a high level of anatomical accuracy for both modalities yielding strongly age- and symptom-severity- dependant glucose hypometabolism in temporal, parietal and precuneal regions and a more extensive network of atrophy in hippocampal, temporal, parietal, occipital and posterior caudate regions. The model suggests greater and more consistent changes in FDG-PET compared to sMRI at earlier and the inversion of this pattern at more advanced AD stages. Our model describes, integrates and predicts characteristic patterns of AD related pathology, uncontaminated by normal age effects, derived from multi-modal data. It further provides an integrative explanation for findings suggesting a dissociation between early- and late-onset AD. The generative model offers a basis for further development of individualized biomarkers allowing accurate early diagnosis and treatment evaluation.
Resumo:
BACKGROUND: Three small trials suggest that intravenous immunoglobulin can affect biomarkers and symptoms of mild-to-moderate Alzheimer's disease. We tested the safety, effective dose, and infusion interval of intravenous immunoglobulin in such patients. METHODS: We did a multicentre, placebo-controlled phase 2 trial at seven sites in the USA and five in Germany. Participants with probable Alzheimer's disease aged 50-85 years were randomly assigned (by a computer-generated randomisation sequence, with block sizes of eight) to infusions every 4 weeks (0·2, 0·5, or 0·8 g intravenous immunoglobulin per kg bodyweight, or placebo) or infusions every 2 weeks (0·1, 0·25, or 0·4 g/kg, or placebo). Patients, caregivers, investigators assessing outcomes, and staff at imaging facilities and the clinical research organisation were masked to treatment allocation, but dispensing pharmacists, the statistician, and the person responsible for final PET analyses were not. Treatment was masked with opaque pouches and infusion lines. The primary endpoint was median area under the curve (AUC) of plasma amyloid β (Aβ)(1-40) between the last infusion and the final visit (2 weeks or 4 weeks depending on infusion interval) in the intention-to-treat population. The trial is registered at ClinicalTrials.gov (NCT00812565) and controlled-trials.com (ISRCTN64846759). FINDINGS: 89 patients were assessed for eligibility, of whom 58 were enrolled and 55 included in the primary analysis. Median AUC of plasma Aβ(1-40) was not significantly different for intravenous immunoglobulin compared with placebo for five of the six intervention groups (-18·0 [range -1347·0 to 1068·5] for 0·2 g/kg, -364·3 [-5834·5 to 1953·5] for 0·5 g/kg, and -351·8 [-1084·0 to 936·5] for 0·8 g/kg every 4 weeks vs -116·3 [-1379·0 to 5266·0] for placebo; and -13·8 [-1729·0 to 307·0] for 0·1 g/kg, and -32·5 [-1102·5 to 451·5] for 0·25 g/kg every 2 weeks vs 159·5 [51·5 to 303·0] for placebo; p>0·05 for all). The difference in median AUC of plasma Aβ(1-40) between the 0·4 g/kg every 2 weeks group (47·0 [range -341·0 to 72·5]) and the placebo group was significant (p=0·0216). 25 of 42 (60%) patients in the intervention group versus nine of 14 (64%) receiving placebo had an adverse event. Four of 42 (10%) patients in the intravenous immunoglobulin group versus four of 14 (29%) receiving placebo had a serious adverse event, including one stroke in the intervention group. INTERPRETATION: Intravenous immunoglobulin may have an acceptable safety profile. Our results did not accord with those from previous studies. Longer trials with greater power are needed to assess the cognitive and functional effects of intravenous immunoglobulin in patients with Alzheimer's disease.
Dimethylarginines, homocysteine metabolism, and cerebrospinal fluid markers for Alzheimer's disease.
Resumo:
Dimethylarginine and homocysteine metabolism are closely linked and alterations of both were observed in plasma and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD). CSF parameters of homocysteine metabolism have recently been found to be associated with the CSF level of the AD biomarker phosphorylated tau (ptau) in AD patients. To investigate possible relationships between homocysteine and dimethylarginine metabolism and the AD CSF biomarkers ptau181 and amyloid-β 1-42 (Aβ42), we assessed parameters of homocysteine metabolism (CSF homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), 5-methyltetrahydrofolate (5-MTHF)) and dimethylarginine metabolism (plasma and CSF asymmetric dimethylarginine (ADMA), symmetric dimethylarginine, L-arginine) as well as CSF Aβ42 and ptau181 in 98 controls and 51 AD patients. Multivariate linear regression analyses were performed to assess associations between the considered parameters. SAH concentrations show significant associations to CSF ADMA levels, and CSF ADMA and L-arginine to ptau181, but not to Aβ42 concentrations in AD patients. When including concentrations of homocysteine, 5-MTHF, SAM, and SAH into the analysis, CSF ADMA concentrations independently predicted ptau181 levels in AD patients but homocysteine-related metabolites were associated with ptau181 only when ADMA was removed from the analysis model. These results suggest that CSF ADMA may interact with CNS homocysteine metabolism and may contribute to neurodegeneration and accumulation of phosphorylated tau in AD. Functional and interventional studies are needed to further proof this hypothesis.
Resumo:
The aim of this doctoral thesis was to study personality characteristics of patients at an early stage of Alzheimer's disease (AD), and more specifically to describe personality and its changes over time, and to explore its possible links with psychological and symptoms (BPS) and cognitive level. The results were compared to those of a group of participants without cognitive disorder through three empirical studies. In the first study, the findings showed significant personality changes that follow a specific trend in the clinical group. The profil of personality changes showed an increase in Neuroticism and a decrease in Extraversion, Openess to experiences, and Conscientiousness over time. The second study highlighted that personality and BPS occur early in the cours of AD. Recognizing them as possible precoce signs of neurodegeneration may prove to be a key factor for early detection and intervention. In the third study, a significant association between personality changes and cognitive status was observed in the patients with incipient AD. Thus, changes in Neuroticism and Conscientiousness were linked with cognitive deterioration, whereas decreased Openness to experiences and Conscientiousness over time predicted loss of independence in daily functioning. Other well-known factors such as age, education level or civil status were taken into account to predict cognitive decline. The three studies suggested five important implications: (1) cost-effective screening should take into account premorbid and specific personality changes; (2) psycho-educative interventions should provide information on the possible personality changes and BPS that may occur at the beginning of the disease; (3) using personality traits alongside other variables in the future studies on prevention might help to better understand AD's etiology; (4) individual treatment plans (psychotherapeutic, social, and pharmacological) might be adapted to the specific changes in personality profiles; (5) more researches are needed to study the impact of social-cultural and lifestyle variables on the development of AD.